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Abstract

This paper proposes a bootstrap-based procedure to build confidence intervals for sin-
gle components of a partially identified parameter vector, and for linear combinations of
such components. Our confidence interval is constructed from the projection of a confi-
dence region for the entire parameter. We propose a novel way to calculate the critical
level, the amount by which we relax the moment restrictions so that the component of
interest, instead of the entire vector, is covered by the confidence interval with a pre-
specified probability. This new methodology allows us to show that in finite sample, our
confidence interval is (weakly) shorter than the projection of confidence regions designed
to cover the entire parameter. We provide simple conditions under which our confidence
interval is asymptotically strictly shorter, and conditions under which our confidence in-
terval has uniformly asymptotically exact coverage. We further show that our inference
method controls asymptotic coverage uniformly over a large class of data distributions.
This class of distributions is non-nested with the class of distributions over which the
main alternative to our method, which is based on a profiled test statistic, is uniformly
valid. Our bootstrap procedure iterates over linear programming problems, and as such
is computationally attractive.
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1 Introduction

A growing body of literature in econometric theory focuses on estimation and inference in

partially identified models. For a given d-dimensional parameter vector θ characterizing the

model, much work has been devoted to develop testing procedures and associated confidence

sets in Rd that satisfy various desirable properties. These include coverage of each element of

the d-dimensional identification region, denoted ΘI , or coverage of the entire set ΘI , with a

prespecified –possibly uniform– asymptotic probability. From the perspective of researchers

familiar with inference in point identified models, this effort is akin to building confidence

ellipsoids for the entire parameter vector θ. However, applied researchers are frequently

interested in conducting inference for each component of a partially identified vector, or for

linear combinations of components of the partially identified vector, similarly to what is

typically done in multiple linear regression.

The goal of this paper is to provide researchers with a novel procedure to conduct such

inference in partially identified models, while ensuring that asymptotic coverage is uniformly

correct in a sense made precise below. The procedure is computationally attractive because

critical values are computed by bootstrapping a linear programming problem.

Given the abundance of inference procedures for the entire parameter vector θ, one might

be tempted to just report the projection of one of them as confidence interval for the pro-

jections of ΘI (e.g., for the bounds on each component of θ). Such a confidence interval

is asymptotically valid but typically conservative. The extent of the conservatism increases

with the dimension of θ and is easily appreciated in the case of a point identified parameter.

Consider, for example, a linear regression in R10, and suppose for simplicity that the limiting

covariance matrix of the estimator is the identity matrix. Then a 95% confidence interval for

each component of θ is obtained by adding and subtracting 1.96 to that component’s esti-

mate. In contrast, projection of a 95% Wald confidence ellipsoid on each component amounts

to adding and subtracting 4.28 to that component’s estimate. We refer to this problem as

projection bias.

The key observation behind our approach is that projection bias can be anticipated. In

the point identified case, this is straightforward. Returning to the example of multiple linear

regression, if we are interested in a confidence interval with a certain asymptotic coverage

for a component of the vector θ, we can determine the level of a confidence ellipsoid whose

projection yields just that confidence interval. When the limiting covariance matrix of the

estimator is the identity matrix and d = 2, projection of a confidence ellipsoid with asymptotic

coverage equal to 85.4% yields an interval equal to the component’s estimate plus/minus 1.96,

and therefore asymptotic coverage of 95% for that component; when d = 5, the required

ellipsoid’s coverage is 42.8%; when d = 10, the required ellipsoid’s coverage is 4.6%.1

1The fast decrease in the required coverage level can be explained observing that the volume of a ball of
radius r in Rd decreases at least geometrically in d.
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The main technical contribution of this paper is to show how this straightforward in-

sight from the point identified case can be generalized in the partially identified case while

preserving computational feasibility and desirable coverage properties.

We focus on the class of moment (in)equalities models, a special case of partial identi-

fication that has received much attention in the recent literature and in which ΘI is equal

to the set of values for θ that satisfy a finite number of moment equalities and inequalities.

Combination of the moment (in)equalities framework with the support function approach

(see Beresteanu and Molinari (2008)) was first proposed by Kaido (2012). For the case of

moment functions that are convex in θ, Kaido (2012) obtained testing procedures and con-

fidence sets that are asymptotically valid pointwise. We generalize these results to the case

that the moments are not convex in θ, and significantly advance them to provide a testing

procedure and associated confidence intervals that are uniformly valid over interesting classes

of data generating processes.

The existing literature provides one main alternative to our method, designed to provide

uniformly valid test procedures and confidence statements for projections of θ ∈ ΘI .
2 This

procedure is based on a profiled test statistic as introduced in Romano and Shaikh (2008)

and significantly advanced in Bugni, Canay, and Shi (2014). As we explain below, the class of

data generating processes over which our procedure is uniformly valid, is non-nested with the

class of data generating processes over which the profiling method is uniformly valid. Another

method proposed by Pakes, Porter, Ho, and Ishii (2011) for inference on projections, is based

on bootstrapping directly the support function of a sample analog of the identified set. As

we explain below, this method controls asymptotic coverage over a significantly smaller class

of models than our method.

The importance of uniform coverage of confidence sets in partial identification was first

emphasized by Imbens and Manski (2004), further clarified in Stoye (2009), and fully devel-

oped for moment (in)equalities models by Romano and Shaikh (2008), Andrews and Guggen-

berger (2009) and Romano and Shaikh (2010).3 These authors show that in this context,

several traps may emerge unless inference procedures are uniform. For example, if identified

sets are intervals that are long relative to standard errors, then the testing problem is essen-

tially one-sided, leading to shorter and more easily computed confidence intervals. Of course,

in a pointwise perspective, every interval with positive length is asymptotically long relative

to standard errors. So one might naively assume a ”long” interval whenever the estimated

2We remark that this method provides uniformly valid confidence intervals also for non-linear functions of
θ, something that our method does not currently do.

3This might be puzzling because uniformity is less frequently emphasized in other contexts and because
it is well known that uniformity over all data generating processes is elusive (Savage). Indeed, uniformity
holds only over restricted classes of models that exclude Savage-type examples. Of course, other areas where
uniformity is heavily studied exist and include contexts where one encounters similar traps to those described
here. Examples include inference close to unit roots Mikusheva (2007), weak identification Andrews and Cheng
(2012), and post-model selection inference (see Leeb and Pötscher (2005) for a negative take). See also the
discussion, with more examples, in Andrews and Guggenberger (2009).
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length of the interval is positive. Inference based on this approximation would, however,

break down along Pitman drift parameter sequences where degenerate intervals, i.e. point

identification, are reached in the limit. This example was explored by Imbens-Manski and

Stoye.

In our problem, uniformity is desirable along a novel dimension: Holding one (reasonably

well-behaved) model fixed, confidence regions should be equally valid for different directions

of projection. It is surprisingly easy to fail this criterion. For example, if one does not

properly account for flat faces which are orthogonal to the direction of projection, the resulting

confidence interval will not be valid uniformly over directions of projection if the true identified

set is a polyhedron. A polyhedron is not only a simple shape but also practically relevant:

it arises for Best Linear Prediction (BLP) using interval data with discrete regressors. In

this example, a method that does not apply at (or near) flat faces is not equally applicable

to all linear hypotheses that one might want to test. This stands in stark contrast to point

identified BLP estimation: Barring collinearity, an F-test will be applicable uniformly over

simple linear hypotheses. Under this latter condition and some others, our method too applies

uniformly over linear hypotheses.

Overview of the Method. Our proposal is to report as confidence interval for a

chosen linear projection of each θ ∈ ΘI , the support function in direction ±p of a c(θ)-level

set of a sample criterion function that aggregates sample violation of moment inequalities,

where c(θ) is chosen to achieve the desired coverage. In the salient special case of moment

inequalities, reporting the c(θ)-level set of the sample criterion function boils down to relaxing

all studentized moment inequalities by a properly determined amount c(θ), and reporting the

support function in direction ±p of the set defined by the relaxed studentized inequalities.

The correct choice of c(θ) entails anticipating projection bias. In particular, for each

candidate θ ∈ Θ, we calibrate c(θ) to insure that across bootstrap repetitions the projection

of each θ ∈ ΘI is covered with a pre-specified probability of at least 1 − α. To assure that

our methodology is computationally attractive, we work with a local linear approximation to

the moment inequalities, which yields that c(θ) can be calibrated by iterating over a linear

programming problem. We then establish uniform asymptotic validity of our procedure over

the class of distributions that we allow for.

This class of data generating processes can be related to the existing literature as follows.

We start from the same assumptions as Andrews and Soares (2010, AS10 henceforth), and

in fact compare the length of our confidence interval to the length of the projection of their

confidence set (which is constructed with the goal of covering each vector θ ∈ ΘI with a

prespecified asymptotic probability uniformly). Similarly to the related literature, we en-

sure uniform validity in presence of drifting-to-binding inequalities by adopting Generalized

Moment Selection as put forward by AS10, Bugni (2009), and Canay (2010). In addition,

our procedure requires that the correlation matrix of the sample moment (in)equalities has

eigenvalues uniformly bounded from below. This assumption was considered in AS10 (for a
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specific criterion function), but eliminated by Andrews and Barwick (2012).

We then further restrict the class of data generating processes that we work with, by

assuming that for each individual constraint, a local linear approximation (i) is a good ap-

proximation to the constraint’s graph and (ii) can be estimated. Around parameter values for

which a moment inequality binds, the gradient of that ineqality must, therefore, be continu-

ous and have strictly positive norm.4 This assumption (and the lower bound on eigenvalues

of the correlation matrix) is not required by the profiling method, and as such data generat-

ing processes for which it fails might be handled by Romano and Shaikh (2008) and Bugni,

Canay, and Shi (2014), but cannot be handled by our procedure.

However, we do not further restrict the local geometry of ΘI . In particular, we allow for

an extreme point of ΘI in direction of projection to be (i) a point of differentiability of the

boundary of ΘI , (ii) a point on a flat face that is orthogonal to the direction of projection, or

(iii) a point on a flat face that is drifting-to-orthogonal to the direction of projection. Case

(iii) is excluded by Romano and Shaikh (2008) and Bugni, Canay, and Shi (2014), and all

three cases are excluded by Pakes, Porter, Ho, and Ishii (2011). We also allow for corners with

extremely acute angles, meaning that the interior of ΘI locally vanishes and that the joint

linear approximation of constraints is not a good approximation to the local geometry of ΘI .

This case is again excluded by Pakes, Porter, Ho, and Ishii (2011) and also by Chernozhukov,

Hong, and Tamer (2007).5 Compared to the related literature, our ability to handle this class

of models comes at the price of an additional (non-drifting) tuning parameter. We explain in

Section 3.4 why this additional parameter is needed, and why it is helpful. We also provide

a (heuristic) method to choose it.

Going back to AS10, our method can be directly compared to projection of their confidence

region if one uses comparable tuning parameters. By construction, the confidence intervals

that we propose are (weakly) shorter in any finite sample. They asymptotically agree if and

only if the asymptotic testing problem is equivalent to intersection bounds in R1, that is, if all

binding constraints are locally orthogonal to the direction of projection.6 This is furthermore

the only case in which (in absence of drifting-to-binding inequalities) projection of AS10’s

confidence region is not, in fact, asymptotically conservative.

There are a few other papers in the literature, that aim at providing confidence intervals

for projections of identified sets. These include Andrews, Berry, and Jia (2004), Chen, Tamer,

and Torgovitsky (2011), Kitagawa (2012), Kline and Tamer (2015) and Wan (2013). However,

each of these contributions provide confidence intervals that are valid pointwise (and some are

Bayesian and not frequentist, as our approach), and therefore might not be valid uniformly

4As we need these conditions in a uniform sense, we actually impose Lipschitz continuity of, as well as a
strictly positive lower bound on the norm of, gradients.

5Our ability to handle this case constitutes a major advance over a previous, widely presented version of
this paper.

6The case is more generic than this description may sound because it obtains whenever the relevant support
point of ΘI is a point of differentiability of ∂ΘI .
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over the class of models that we consider.

Structure of the paper. Section 2 sets up notation and describes the inferential prob-

lem that we focus on, providing the basic insight in our approach. Section 3 describes the

bootstrap procedure based on linear programming that we propose for computing the level

ĉn(θ). It then lays out our assumptions and presents our main results: asymptotic validity

and improvement over methods based on projection of high dimensional confidence ellipsoids.

The section is concluded with a discussion of the challenges posed by the local geometry of

the identification region for uniform inference. Within this discussion, we further elucidate

the relation between our method, and the existing literature.

Sections reporting computational aspects of the method, Monte Carlo exer-

cises, and concluding remarks, are TBA.

2 Set up

We start by introducing basic notation for the moment (in)equalities framework. Let Xi ∈
X ⊆ RdX be a random vector with distribution P and let Θ ⊆ Rd denote a parameter space.

We then let mj : X ×Θ→ R denote a measurable function characterizing the model, known

up to parameter vector θ ∈ Θ, with j = 1, . . . , J1 +J2. The true parameter value θ is assumed

to satisfy the moment inequality and equality restrictions:

EP [mj(Xi, θ)] ≤ 0, j = 1, · · · , J1,

EP [mj(Xi, θ)] = 0, j = J1 + 1, · · · , J1 + J2. (2.1)

The identification region ΘI(P ) is the set of parameter values in Θ that satisfy these moment

restrictions. In what follows, we simply write ΘI whenever its dependence on P is obvious.

For a random sample {Xi, i = 1, · · · , n} of observations drawn from P , we let m̄j,n(θ) ≡
n−1

∑n
i=1mj(Xi, θ), j = 1, · · · , J1 + J2 denote the sample moments.

A key tool for our inference procedure is the support function of a parameter set. We

denote the unit sphere in Rd by Sd−1 ≡ {p ∈ Rd : ‖p‖ = 1}, an inner product between two

vectors x, y ∈ Rd by x′y, and use the following standard definition of support function and

support set:

Definition 2.1: Given a closed set A ⊂ Rd, its support function is

s(p,A) = sup{p′a, a ∈ A}, p ∈ Sd−1,

and its support set is

H(p,A) = {a ∈ Rd : p′a = s(p,A)} ∩A, p ∈ Sd−1.
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It is useful to think of p′a as a projection of a ∈ Rd to a one-dimensional subspace

spanned by the direction p. For example, when p is a vector whose j-th coordinate is 1

and other coordinates are 0s, p′a = aj is the projection of a to the j-th coordinate. The

support function of a set A gives the supremum of the projections of points belonging to

this set. Since inf{p′a, a ∈ A} = −s(−p,A), the projection of any a ∈ A lies in the interval

[−s(−p,A), s(p,A)]. Throughout, we call this interval the projection of A.7

Our goal is to cover each element in the projection of ΘI in direction p ∈ Sd−1. Toward

this end, consider a confidence interval CIn obtained by projecting a confidence region Cn
for the entire parameter vector θ. This is akin to projecting the Wald ellipsoid in the point

identified setting. In the moment (in)equalities setting, confidence regions designed to cover

θ satisfying (2.1) have the following common form:

Cn(cn) ≡ {θ ∈ Θ : Tn(θ) ≤ cn(θ)}, (2.2)

where Tn(θ) is a test statistic, and cn(θ) is a critical value (see e.g. Chernozhukov, Hong, and

Tamer, 2007; Andrews and Soares, 2010). Critical values cn(θ) available in the literature are

calibrated so that the entire parameter θ is covered by the confidence region with at least a

prespecified probability 1−α asymptotically. This means that cn(θ) is large enough to ensure

that any linear projection of θ is covered with probability 1− α by the projection of Cn(cn),

i.e. p′θ ∈ [−s(−p, Cn(cn)), s(p, Cn(cn))] for all p ∈ Sd−1. Clearly, this is more than needed as

we aim at covering the projection of θ for one direction. Projecting Cn(cn), therefore, tends

to produce a conservative confidence interval.

As discussed in the introduction, this projection bias, however, can be removed by explic-

itly calculating a critical value that is just enough to ensure the coverage of the projection

of interest. As opposed to the simple adjustment of the confidence level for the Wald confi-

dence ellipsoid, the calculation of such a critical value in the moment (in)equalities setting is

nontrivial, and it requires a careful analysis of the local behavior of the moment restrictions

at each point in the identification region. This is because the projection of the confidence

region depends on (i) the behavior of the sample moments entering the inequality restric-

tions, which can change discontinuously depending on whether they bind at θ or not and

(ii) the local geometry of the identification region at θ. Here, by local geometry, we mean

the shape of the constraint set formed by the sample moment restrictions and its relation to

the level set of the objective function p′θ. These features can be quite different at different

points in the identification region, which in turn makes uniform inference for the projection

7The projection of any a ∈ A lies in the projection of A, but the converse is not always true. If A is not
connected, there may exist x ∈ [−s(−p,A), s(p,A)] for which no a can be found such that x = p′a. Most
applications of partial identification to date are for models that yield connected identification regions. Some
exceptions include Molinari (2008) and Chesher, Rosen, and Smolinski (2012). However, in some of the models
considered in these papers, the researcher knows ex ante that ΘI is disconnected, and also what subset of Θ
contains each connected subset of ΘI . Hence, our procedure can be repeated for each connected component
separately to obtain confidence intervals with smaller probability of false coverage.
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challenging. In particular, the second issue does not arise if one only considers inference for

the entire parameter vector, and hence this new challenge requires a new methodology. The

core innovation of this paper is to provide a novel and computationally attractive procedure

to construct a critical value that overcomes these challenges.

With a particular choice of a test statistic, the calculation of a critical value can be

recast as a problem of finding how much one needs to relax sample counterparts of the

moment restrictions so that the projection of Cn(cn) covers p′θ with a prespecified asymptotic

probability, uniformly in P . Let Cn(cn) be a confidence region as in (2.2) with the test statistic

Tn(θ) = max{ max
j=1,··· ,J1

√
n[m̄n,j(θ)/σ̂n,j(θ)]+, max

j=J1+1,··· ,J2

√
n|m̄n,j(θ)/σ̂n,j(θ)|}, (2.3)

where σ̂n,j(θ) is a suitable estimator of the asymptotic standard deviation, σP,j(θ), of
√
nm̄n,j(θ).

The support function of Cn(cn) is then the optimal value of the following nonlinear program

(NLP):

s(p, Cn(cn)) = sup
θ∈Θ

p′θ

s.t.
√
nm̄n,j(θ)/σ̂n,j(θ) ≤ cn(θ), j = 1, · · · , J1 + 2J2, (2.4)

where we define the last J2 moments as m̄n,J1+J2+k(θ) = n−1
∑n

i=1−mJ1+k(Xi, θ) for k =

1, · · · , J2. In other words, we split moment equality constraints into two opposing inequality

constraints relaxed by cn(θ) and impose them in addition to the first J1 inequalities relaxed

by the same amount. In total, we therefore have J ≡ J1 + 2J2 inequality constraints.

Remark 2.1: While our analysis is carried out working with the criterion function in

equation 2.3, it is easy to show that our method (including the bootstrap procedure described

in Section 3.1) applies similarly to a criterion function of the form

T̃n(θ) =
∑

j=1,··· ,J1

√
n[m̄n,j(θ)/σ̂n,j(θ)]+ +

∑
j=J1+1,··· ,J2

√
n|m̄n,j(θ)/σ̂n,j(θ)|, (2.5)

Criterion function Tn corresponds to criterion function S3 in AS10; criterion function T̃n

is akin to criterion function S1 in AS10. In addition, AS10 propose a QLR based test

statistic previously considered in Rosen (2008). This test statistic does not land itself easily

to linearization, and as such we do not consider it in this paper.

Define the asymptotic size of the confidence interval by

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (p′θ ∈ CIn), (2.6)

where P is a class of distributions that we specify below. Let the two-sided confidence interval
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be defined by

CIn ≡ [−s(−p, Cn(cn)), s(p, Cn(cn))]. (2.7)

Consider a sequence of parameter and distribution pairs (θn, Pn) ∈ {(θ, P ) : θ ∈ ΘI(P ), P ∈
P}. Then, the projection of θn is covered when

− s(−p, Cn(cn)) ≤ p′θn ≤ s(p, Cn(cn))

⇔

{
− sup−p′ϑ
s.t. ϑ ∈ Θ,

√
nm̄n,j(ϑ)
σ̂n,j(ϑ) ≤ cn(ϑ), ∀j

}
≤ p′θn ≤

{
sup p′ϑ

s.t. ϑ ∈ Θ,
√
nm̄n,j(ϑ)
σ̂n,j(ϑ) ≤ cn(ϑ), ∀j

}

⇔

{
− supλ−p′λ

s.t.λ ∈
√
n(Θ− θn),

√
nm̄n,j(θn+λ/

√
n)

σ̂n,j(θn+λ/
√
n)
≤ cn(θn + λ/

√
n),∀j

}
≤ 0

≤

{
supλ p

′λ

s.t.λ ∈
√
n(Θ− θn),

√
nm̄n,j(θn+λ/

√
n)

σ̂n,j(θn+λ/
√
n)
≤ cn(θn + λ/

√
n), ∀j

}
(2.8)

where the second equivalence follows from rewriting the problem which maximizes p′ϑ with

respect to ϑ localized as ϑ = θn + λ/
√
n by another problem which maximizes the same

objective function with respect to the localization parameter λ. The argument above suggests

that one can control the confidence size if one finds the right amount of cn such that 0 lies

within the optimal values of the NLPs in (2.8) with probability 1− α.

To reduce the computational cost associated with calibrating the value of cn, we ap-

proximate the probability of the event in equation (2.8), by taking a linear expansion in

λ of the constraint set. In particular, for the j-th constraint, adding and subtracting

EP [mj(Xi, θ + λ/
√
n)] yields

√
nm̄j(Xi, θn + λ/

√
n)

σ̂j(θn + λ/
√
n)

=
√
n

(m̄j(Xi, θn + λ/
√
n)− EP [mj(Xi, θn + λ/

√
n)])

σ̂j(θn + λ/
√
n)

+
√
n
EP [mj(Xi, θn + λ/

√
n)]

σ̂j(θn + λ/
√
n)

= {GP,j,n(θn + λ/
√
n) +DP,j(θ̄n)′λ+ hP,j,n(θn)}(1 + ηj,n(θn)), (2.9)

where GP,j,n(·) =
√
n(m̄n,j(·) − EP [mj(Xi, ·)])/σP,j(·) is a normalized empirical process in-

dexed by θ ∈ Θ, DP,j(·) ≡ ∇θ{EP [mj(Xi, ·)]/σP,j(·)} is the gradient of the normalized

moment, and hP,j,n(·) ≡
√
nEP [mj(Xi, ·)]/σP,j(·) is the population moment scaled by

√
n.

The second equality follows from the mean value theorem, where θ̄n represents a mean

value between θn and θn + λ/
√
n, which can differ across components of the gradient, and

ηj,n(·) ≡ σP,j(·)/σ̂j,n(·)− 1 can be shown to converge in probability to 0 uniformly.

Under suitable regularity conditions set forth in Section 3.2 (which include differentia-

bility of EP [mj(Xi, θ)] in θ for each j), we show that the probability that the nonlinear
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program in equation (2.8) takes a value greater or equal to zero, is suitably approximated

by the probability that a program linear in λ takes a value greater or equal to zero. The

constraint set of this linear program is given by the sum of (i) an empirical process GP,j(θ)

evaluated at θ (that we can approximate by a bootstrap) (ii) a rescaled gradient times λ,

DP,j(θ)
′λ (that we can uniformly consistently estimate on compact sets), and (iii) the pa-

rameter hP,j,n(θ) that measures the extent to which each moment inequality is binding. This

suggests a computationally attractive bootstrap procedure based on linear programs.

As commonly done in nonlinear econometric models, we use linearizations to obtain a

first-order approximation to the statistic of interest. In our setting, the object of interest

is the support function of the confidence region. Calculating the support function subject

to the moment (in)equality constraints is similar to calculating a nonlinear estimator (e.g.

GMM estimator) in the sense that both seek for a particular parameter value, which “solves”

a system of sample moment restrictions. For our problem, we seek for a parameter value

satisfying suitably relaxed moment inequalities and equalities whose projection is maximal,

while GMM, for example, seeks for a parameter value that minimizes the norm of sample

moments, or necessarily a value that solves its first-order conditions. Hence, the solution

concepts are different. However, the methodology for obtaining approximations is common.

Recall that one may obtain an influence function of the GMM estimator by linearizing the

moment restrictions in the first-order conditions around the true parameter value and by

solving for the estimator. In a complete analogy to this example, calculating the optimal value

of the linear program discussed above can be interpreted as applying a particular solution

concept (the maximum value of the linear projections) to a system of moment (in)equality

constraints linearized around the true value.

3 Asymptotic Validity of Inference

3.1 An LP-based bootstrap critical value

In light of the discussion in the previous section, for a given θ ∈ Θ we calibrate the level cn(θ)

using a bootstrap procedure that iterates over linear programs (LP). Our bootstrap critical

value is defined as

ĉn(θ) ≡ inf{c ∈ R+ : P (−Zbn(−p, c, θ) ≤ 0 ≤ Zbn(p, c, θ)) ≥ 1− α}, (3.1)

for a process Zbn, which can be calculated as follows. Below, let m∗j (·, θ) ≡ mj(·, θ)− m̄j,n(θ)

be the re-centered moment function and let D̂n,j(θ) be an estimator of DP,j(θ).

Step 0 For given c, repeat the following bootstrap simulation for b = 1, ..., B times:

Step 1 Draw a new sample (Xb
i )
n
i=1 by independently resampling the data with replacement.

[10]



Step 2 Compute Zbn(q, c, θ) for q = p and −p by solving the following program:

Zbn(q, c, θ) ≡ sup
λ

q′λ

s.t. λ ∈ ρBd,
1√
n

n∑
i=1

m∗j (X
b
i , θ)/σ̂n,j(θ) + D̂n,j(θ)

′λ+ ζ̂n,j(θ) ≤ c, j = 1, · · · , J,

(3.2)

where ρ > 0 is a constant chosen by the researcher, Bd = {x ∈ Rd : |xj | ≤ 1,∀j} is a

unit box in Rd, and ζ̂n,j(θ) is one of the generalized moment selection (GMS) functions

proposed by Andrews and Soares (2010) and defined by

ζ̂n,j(θ) =

0 if κ−1
n

√
nm̄j,n(θ)/σ̂j,n(θ) ≥ −1

−∞ if κ−1
n

√
nm̄j,n(θ)/σ̂j,n(θ) < −1.

(3.3)

Step 3 Compute

ĉn(θ) ≡ inf{c : P ∗(−Zbn(−p, c, θ) ≤ 0 ≤ Zbn(p, c, θ)) ≥ 1− α}. (3.4)

The linear program in (3.2) can be solved efficiently using commonly used softwares.8

Remark 3.1: For concreteness in Step 2 above we propose the use of a specific GMS

function among the ones in AS10. As shown in the Appendix, our results apply to all GMS

functions in AS10, except one.9

The idea behind this bootstrap procedure is as follows. First, the bootstrapped empirical

process and the estimator of the gradient give approximations to the first two terms in the

constraint in (2.8). Second, the GMS function approximates the local slackness parameter

hP,j,n(θ) conservatively. Suppose, for example, the j-th constraint is locally binding at θ, i.e.

hP,j,n(θ) is negative but is close to 0. If the GMS procedure selects this constraint, it sets

the third term in (3.2) to 0. This makes our critical value slightly more conservative because

replacing hP,j,n(θ) with 0 requires us to relax the constraints by a larger amount to make the

maximized value of the linear program greater or equal to 0 with probability 1−α. Since the

local slackness parameter cannot be consistently preestimated uniformly, we employ the GMS

procedure proposed by Andrews and Soares (2010) to obtain the conservative distortion.

In addition to the linear approximation of the constraints in (2.8), our bootstrap procedure

restricts λ to the “ρ-box” ρBd for some ρ > 0. This restriction is introduced to allow our

8Examples of high-speed solvers for linear programs include CVXGEN (available from http://cvxgen.com)
and Gurobi (available from http://www.gurobi.com).

9These are ϕ1 − ϕ4 in AS10, all of which depend on κ−1
n

√
nm̄j,n(θ)/σ̂j,n(θ). We do not consider GMS

function ϕ5 in AS10, which depends also on the covariance matrix of the moment functions.

[11]
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methodology to remain uniformly valid even in situations where the set of moment restrictions

tend to a configuration that makes inference for the projection challenging. We discuss this

point in detail in Section 3.4.

3.2 Assumptions

Our first assumption is on the parameter space and the criterion function. Below, ε and M

are used to denote generic constants which may be different in different appearances.

Assumption 3.1: Θ ⊆ Rd is compact and convex with a nonempty interior.

Compactness is a standard assumption on Θ for extremum estimation. In addition we

require convexity as we use mean value expansions of EP [mj(Xi, θ)] in θ as shown in equation

(2.9). We then define our model as follows.

Assumption 3.2: The model P for P satisfies the following conditions:

(i) EP [mj(Xi, θ)] ≤ 0, j = 1, . . . , J1 and EP [mj(Xi, θ)] = 0, j = J1 + 1, · · · , J1 + J2 for

some θ ∈ Θ;

(ii) {Xi, i ≥ 1} are i.i.d. under P ;

(iii) σ2
P,j(θ) ∈ (0,∞) for j = 1, · · · , J for all θ ∈ Θ;

(iv) For constants δ > 0 and 0 < M <∞ and all j = 1, · · · , J ,

EP

[
sup
θ∈Θ

∣∣∣mj(Xi, θ)

σP,j(θ)

∣∣∣2+δ]
≤M ; (3.5)

(v) Let m̃(Xi, θ) ≡ (m1(Xi, θ), · · · ,mJ1+J2(Xi, θ))
′. Let Ω̃P (θ) = CorrP (m̃(Xi, θ)). The

smallest eigenvalue of Ω̃P (θ) is greater than ω for some ω > 0.

(vi) There is a positive constant ε such that ΘI(P ) ⊂ Θ−ε, where Θ−ε = {θ ∈ Θ : dH(θ,Rd \
Θ) ≥ ε}.

Assumption 3.2 (i)-(iv) based on Andrews and Soares (2010) are standard in the liter-

ature. Assumption 3.2 (v) requires that the correlation matrix of the sample moments has

eigenvalues uniformly bounded from below. It is used to show that the probability that the

nonlinear constraint set is empty while the linearized constraint set is non-empty, is uniformly

arbitrarily small. This is used to establish asymptotic validity of our linear approximation.

Assumption 3.2 (vi) requires that the identified set is in an ε-contraction of the parameter

space, where ε is a uniform constant. This implies that the behavior of the support function of

Cn(cn) is determined only by the moment restrictions asymptotically under any P ∈ P. This
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assumption could be dropped if the parameter space can be defined via moment inequalities,

e.g. Θ = [0, 1]d or similar.

For any sequence of random variables {Xn} and a positive sequence an, we write Xn =

oP(an) if for any ε, η > 0, there is N ∈ N such that supP∈P P (|Xn/an| > ε) < η,∀n ≥
N . We also write Xn = OP(an) if for any η > 0, there is a M ∈ R+ and N ∈ N such

that supP∈P P (|Xn/an| > M) < η, ∀n ≥ N . The following assumption collects regularity

conditions on the gradient and variance of the moments.

Assumption 3.3: The model P for P satisfies the following additional conditions:

(i) For each j, there exist DP,j(θ) ≡ ∇θ{EP [mj(X, θ)]/σP,j(θ)} and its estimator D̂j,n(θ)

such that supθ∈Θ ‖D̂j,n(θ)−DP,j(θ)‖ = oP(1). Further, there exist M,M > 0 such that

M < ‖DP,j(θ)‖ ≤M for all θ ∈ ∂ΘI(P ) and j = 1, · · · , J ;

(ii) There exists M > 0 such that maxj=1,··· ,J ‖DP,j(θ) − DP,j(θ
′)‖ ≤ M‖θ − θ′‖ for all

θ, θ′ ∈ Θ;

(iii) supθ∈Θ maxj=1,...,J1+J2

∣∣∣ σ̂n,j(θ)σP,j(θ)
− 1
∣∣∣ = OP(n−1/2).

Assumption 3.3 requires that the normalized population moment is differentiable, the

derivative is Lipschitz continuous, and it can be consistently estimated uniformly in θ and P .

We require these conditions because we use a linear expansion of the population moments to

obtain a first-order approximation to the support function of Cn and our bootstrap procedure

requires an estimator of the population gradient. Note that, while Assumption 3.3 restricts

the norm of the gradient, we do not directly assume that Tn(θ) is bounded from below by

a polynomial function of θ outside a neighborhood of the identification region, which was

assumed in some of the existing work (see e.g. Chernozhukov, Hong, and Tamer, 2007).

Assumption 3.3 (iii) requires that an estimator of the asymptotic variance is available and it

converges at a parametric rate. This condition holds under regularity conditions on higher

moments.

A final set of assumptions is on the normalized empirical process. For this, define the

variance semimetric ρP by

ρP (θ, θ′) ≡
∥∥∥{V arP (σ−1

P,j(θ)mj(X, θ)− σ−1
P,j(θ

′)mj(X, θ
′)
)1/2}J

j=1

∥∥∥. (3.6)

For each θ, θ′ ∈ Θ and P , let QP (θ, θ′) denote a J-by-J matrix whose (j, k)-th element is the

covariance between mj(Xi, θ)/σP,j(θ) and mk(Xi, θ
′))/σP,k(θ

′) under P .

Assumption 3.4: (i) For every P ∈ P, and j = 1, · · · , J , {σ−1
P,j(θ)mj(·, θ) : X → R, θ ∈

Θ} is a measurable class of functions; (ii) The empirical process GP,n with j-th component
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GP,j,n is asymptotically ρP -equicontinuous uniformly in P ∈ P. That is, for any ε > 0,

lim
δ↓0

lim sup
n→∞

sup
P∈P

P ∗
(

sup
ρP (θ,θ′)<δ

‖GP,n(θ)−GP,n(θ′)‖ > ε
)

= 0; (3.7)

(iii) QP satisfies

lim
δ↓0

sup
‖(θ1,θ′1)−(θ2,θ′2)‖<δ

sup
P∈P
‖QP (θ1, θ

′
1)−QP (θ2, θ

′
2)‖ = 0. (3.8)

Under this assumption, the class of normalized moment functions is uniformly Donsker.

This allows us to show that the first-order linear approximation to s(p, Cn(cn)) is valid and

further establish the validity of our bootstrap procedure.

3.3 Main Results

The following theorem is our first main result, which establishes the asymptotic validity of

the confidence interval.

Theorem 3.1: Suppose Assumptions 3.1-3.4 hold. Let 0 < α < 1/2. Then,

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (p′θ ∈ [−s(−p, Cn(ĉn)), s(p, Cn(ĉn))]) ≥ 1− α, (3.9)

where ĉn was defined in equation (3.4).

Our second results establishes that CIn is always a subset of a confidence interval obtained

by projecting an Andrews and Soares (2010) confidence set. We remark, however, that the

confidence set proposed by Andrews and Soares (2010) is built to uniformly cover each vector

in ΘI with a prespecified asymptotic probability, and as such is designed for a different

inferential problem than the one considered here. Below we let cASn denote the critical value

obtained applying Andrews and Soares (2010) with the criterion function in equation (2.3)

and with the same choice of ζ̂n and κn as defined in equations (A.5) and (A.7), respectively.

Theorem 3.2: Suppose Assumptions 3.1-3.4 hold. Let 0 < α < 1/2. Then for each

n ∈ N
CIn ⊆ [−s(−p, Cn(cASn )), s(p, Cn(cASn ))]. (3.10)

3.4 The local geometry of the identification region and uniform inference

The local geometry of the identification region affects inference for the projection of θ in

various ways. We illustrate, through examples, how our inference method handles some of

the key challenges faced by the existing methods.

We begin with a simple example.
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Example 3.1: Let Θ = [−K,K]2 for some K > 0 and moment functions be given by

m1(x, θ) = x(1)(θ1 − 1)2 + θ2 − x(2) (3.11)

m2(x, θ) = x(3)(θ1 + 1)2 + θ2 − x(4), (3.12)

where we assume X(l), l = 1, · · · , 4 are i.i.d. random variables with mean µx ≥ 0 and variance

σ2
x. The parameter of interest is θ2. So, we let p = (0, 1)′.

The projection of θ ∈ ΘI is maximized at a unique point θ∗ = 0. For simplicity, consider

constructing a one-sided confidence interval CIn = (−∞, s(p, Cn(cn))], where s(p, Cn(cn)) is

defined as in (2.4) with J1 = 2 inequality restrictions with the moment functions in (3.11)-

(3.12) and no equality restrictions. Then, θ∗ gives the least favorable case for this one-sided

confidence interval.

Consider the following linear program at θ = θ∗:

Zn(p, c, θ) = sup
λ∈R2

p′λ

s.t. GP,n(θ) +DP (θ)λ+ hP,n(θ) ≤ c (3.13)

where GP,1,n(θ∗) =
√
n(X̄(1) + X̄

(2)
n − 2µx)/

√
2σx and GP,2,n(θ∗) =

√
n(X̄(3) + X̄

(4)
n −

2µx)/
√

2σx, the gradient matrix DP (θ∗) has rows DP,1(θ∗)′ = (2µx/
√

2σx, 1/
√

2σx) and

DP,2(θ∗)′ = (−2µx/
√

2σx, 1/
√

2σx), and hP,n(θ∗) = (0, 0)′. This program is infeasible in

the sense that it uses unknown population objects, in particular, the knowledge that θ∗ is a

point at which both population moment inequalities bind, which implies hP,n(θ∗) = (0, 0)′.

Though infeasible, it gives useful insights. Figure 1 shows the original nonlinear constraints

and linearized constraints around θ∗ perturbed by GP,n. The key idea of our procedure is to

find cn(θ∗) such that Zn(p, cn(θ∗), θ∗), the value of the perturbed linear program, is greater

than or equal to 0 with probability 1− α, and use it in the original nonlinear problem upon

projecting Cn(·).
In Example 3.1, the optimal value of the linear program in (3.13) has a closed form, which

is Zn(p, c, θ∗) = p′D−1
P (c − GP,n) =

√
2σx(c −Wn), where Wn = (GP,1,n + GP,2,n)/2 has a

limiting distribution N(0, 1/2) (under a fixed (θ∗, P )). Therefore, by setting cn(θ∗) to 1.15,

the 95%-quantile of N(0, 1/2), one can let Zn(p, cn(θ∗), θ∗) be greater than or equal to 0 with

probability 95% asymptotically.10 This infeasible critical value is the baseline of our method.

In practice, the researcher does not know whether a given θ is on the boundary of the identi-

fication region nor the population objects: the distribution of GP,n(θ) and (DP (θ), hP,n(θ)).

10This argument is based on a pointwise asymptotics, which fixes (θ∗, P ) and sends n to ∞. This is done
only for illustration purposes to obtain a specific value for cn(θ∗). Our proof does not use this argument. Note
that the critical value calculated under this pointwise asymptotics depends on the covariance matrix of GP,n.
For example, if corr(GP,1,n,GP,2,n)=-0.9, it is enough to set cn(θ∗) to 0.37.
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θ1

θ2

E[m1(X, θ)]E[m2(X, θ)]

θ∗
λ1

λ2

cσ1
cσ2

Figure 1: Moment inequalities (left) and linearized constraints (right)

Our bootstrap procedure therefore replaces them with suitable estimators.

An alternative yet closely related way to construct a confidence interval is to use the

support function of a sample analog estimator Cn(0) ≡ {θ ∈ Θ : m̄n(θ) ≤ 0} of the identified

set. This approach was taken for example in Pakes, Porter, Ho, and Ishii (2011) (see also

Kaido and Santos, 2014, section 4.3). A one-sided confidence interval can be obtained by

properly expanding the support function, i.e. C̃In = (−∞, s(p, Cn(0)) + τ/
√
n], where τ

is the 1 − α quantile of the limiting distribution of the normalized support function Sn ≡√
n[s(p, Cn(0))− s(p,ΘI(P ))]. The normalized support function can be approximated by the

linear program in (3.13) with c = 0, which is Zn(p, 0, θ∗) =
√

2σxWn, and this in turn, suggests

the choice τ = σx×1.645. This critical value, however, depends on σx and is not invariant to

scale transformations of moments. This is not desirable as inference methods without scale

invariance are known to have poor power properties. (see e.g. Chernozhukov, Kocatulum,

and Menzel, 2015). The lack of invariance is due to the fact that the procedure compares

the standardized constraints to c = 0, which is equivalent to comparing non-standardized

constraints to 0. Note that our procedure does not suffer from this issue because, whenever

a positive amount of relaxation is necessary, the level c is compared to the standardized

moments.

Next, we consider a setting where the projection is maximized at multiple points. For this,

we add, to the existing constraints, one more inequality restriction whose moment function

is given by

m3(x, θ) = x(5)θ1 + θ2 + x(6), (3.14)

where X(5) and X(6) are independent random variables independent from X(1), · · · , X(4)

with mean EP [X(5)] = 0, EP [X(6)] = µx and variance V arP (X(5)) = V arP (X(6)) = σ2
x. (See
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θ1

θ2

θ1

θ2

θ∗θ∗∗

Figure 2: Flat face (left) and a near flat face (right)

Figure 2.)

The projection of θ ∈ ΘI is then maximized over the following set:

H(p,ΘI) = {θ ∈ Θ : θ1 ∈ [1−
√

2,−1 +
√

2], θ2 = −µx}. (3.15)

In other words, the identification region has a flat face toward direction p. At each θ ∈
H(p,ΘI), one can study the infeasible linear program. For example, at θ∗ = (1−

√
2,−µx),

the first and third moment inequalities bind, but not the second one. Then, the approximat-

ing linear program in (3.13) holds with hP,n(θ∗) = (0,−
√
n(4−2

√
2)µx, 0)′. If the magnitude

of the second component of hP,n(θ∗) is large, (or along any sequence (θn, Pn) such that

hPn,2,n(θn) → −∞), the second moment inequality becomes negligible. Solving for the opti-

mal value using the two remaining constraints then yields Zn(p, c, θ∗) =
√

2σx(c−Wn), where

Wn = GP,3,n(θ∗) approximately follows the standard normal distribution, which suggests that

cn(θ∗) = 1.645, the usual one-sided critical value, can be used. However, if hP,2,n(θ∗) is close

to 0, the second constraint is also relevant. In such cases, our procedure uses the GMS func-

tion to replace hP,2,n(θ∗) with 0 and adds the second inequality as an additional constraint to

the linear program. This in turn increases cn(θ∗) needed to ensure Zn(p, cn(θ∗), θ∗) ≥ 0 with

probability 1 − α. The same argument applies to every θ in the support set. For example

at θ = (0,−µx), the third moment inequality is the only one that binds, which again defines

another approximating linear program with a different local slackness parameter. Hence, the

amount of relaxation needed to ensure the one-sided coverage differs across points in H(p,ΘI)

due to different values of the slackness parameter.11 Furthermore, the analysis also extends

11On the other hand, if we abstract from the local slackness parameters associated with the slack constraints,
the infeasible critical value is common across points in the support set. That is, whenever the magnitude of
the slack constraints are −∞, the infeasible critical value is 1.645 at all points in the support set. This is
because, in the presence of the third constraint whose gradient is aligned with p, the problem reduces to a
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to settings where the identification region has a face whose normal vector is nearly aligned

with p as shown in Figure 2. We will come back to this case later in this section.

As discussed above, the presence of a flat face or more generally a non-singleton support

set does not complicate our inference procedure because we calibrate the level at each θ. On

the other hand, these features raise a non-trivial challenge for methods that use test statistics

whose limiting distributions depend on H(p,ΘI). For example, consider again the method

that constructs a confidence interval from the support function of the estimated identified

set. If the support set is not a singleton, the distribution of the normalized support function

Sn can be shown to be approximated by the supremum of Zn(p, 0, θ) over H(p,ΘI). Hence,

the support set becomes a nuisance parameter that affects the distribution of the statistic.

Uniform size control then becomes challenging. In particular, for a sequence of DGPs Pn

along which the support sets are singletons (i.e. H(p,ΘI(Pn)) = {θn} for all n) but non-

singleton in the limit, the limiting distribution of the statistic changes in a discontinuous

manner. We call such a setting “near flat face”. In the present example, one can construct

such a sequence Pn by letting EPn [X(5)] > 0 for all n and letting it drift to 0 (see Figure

2). To handle this issue, one needs to either assume away the presence of a flat face (toward

direction p) or to come up with a way to introduce a conservative distortion. Pakes, Porter,

Ho, and Ishii (2011) and Kaido and Santos (2014) (Assumption 4.1) for example take the

first approach and assume away flat faces. However, this is not desirable as some of the

commonly studied examples in this literature exhibit flat faces.12 In a related context, the

recent work of Bugni, Canay, and Shi (2014) considers testing the hypothesis H0 : f(θ) = γ

and constructing a confidence interval through a test inversion. Their procedure can be

employed to make inference for the projection of θ by taking f(θ) = p′θ. Using a profiled

test statistic inf{θ:p′θ=γ} anQn(θ), where Qn is a sample criterion function, Bugni, Canay,

and Shi (2014) show that, one can make uniformly valid inference by calculating a critical

value via bootstrap, while conservatively approximating the local slackness parameters and by

constructing an estimator of the parameter set ΞI(γ) ≡ {θ ∈ ΘI : p′θ = γ}. Note that ΞI(γ)

coincides with the support set when γ equals s(p,ΘI). Although their inference is valid over a

class of distributions under which ΞI(γ) is not necessarily singleton-valued, they require that

the population criterion function increases as a polynomial function of the distance from θ to

ΞI(γ) when θ deviates from this set along the hyperplane {θ : p′θ = γ}.13 This requirement,

however, excludes data generating processes that exhibit near flat faces. For example, in

one-sided testing problem.
12For example, Beresteanu and Molinari (2008) show that the identification region for the best linear pre-

dictor of an interval-valued outcome variable with discrete covariates has flat faces. See also Freyberger and
Horowitz (2013) for a nonparametric IV example with discrete variables.

13Without this requirement, their estimator of ΞI(γ) may include points at which population moment
(in)equalities are violated but by not much. At such points, the sample moment inequalities may even realize
as slack constraints, and hence replacing the (violated) population local slackness parameter with the GMS
function does not necessarily provide conservative approximations. For details, we refer to discussions provided
in Bugni, Canay, and Shi (2015) (page 265).
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the right panel of Figure 2, consider deviating from θ∗ toward direction (−1, 0). Because of

the third constraint tending to a flat face, one can make the population criterion function

increase arbitrarily slowly along such a deviation.

Recall that our bootstrap procedure in Section 3.1 imposed the additional constraint

λ ∈ ρBd. Below, we discuss the role of this constraint using Example 3.1.

Recall that DP (θ∗) has rows:

DP,1(θ∗)′ = (2µx/
√

2σx, 1/
√

2σx), and DP,2(θ∗)′ = (−2µx/
√

2σx, 1/
√

2σx). (3.16)

Consider a sequence of DGPs such that µx → 0. As we saw before, under each DGP with

µx > 0, the infeasible linear program calibrates cn(θ∗) = 1.15. In the limit, however, the

moment inequalities reduce to the following restrictions:

θ2 − EP [X(2)] ≤ 0 (3.17)

θ2 − EP [X(4)] ≤ 0. (3.18)

In other words, θ2’s upper bound is given by the minimum of the two means: EP [X(2)] and

EP [X(4)]. This structure is also known as “intersection bounds” (Hirano and Porter, 2012).

The value of the linear program in (3.13) is then Zn(p, c, θ∗) = min{c−G1,n, c−G2,n}. This

suggests that one would need a two-sided critical value, cn(θ∗) = 1.96 instead of 1.15 to ensure

that Zn(p, cn(θ∗), θ∗) ≥ 0 with probability at least 95%. This is another challenge for the

uniform validity of inference. For any setting where the constraints are close to the minimum

of the two means, any inference method that does not take into account this feature would

have poor size control.

This type of example is the main reason we restrict the localization parameter λ into the ρ-

box. Adding the ρ-box constraint to the linear program in (3.13) lowers the value of Zn(p, c, θ)

for each c, which means that one needs a higher cn(θ) to ensure that Zn(p, cn(θ), θ) ≥ 0 with

a prescribed probability. Hence, adding the ρ-box constraint makes the critical value weakly

more conservative. How this modification works in the example above is described in Figure 3.

The figure shows the data generating process on the left panel and a realization of a constraint

in the bootstrap problem in (3.2). Note that, due to the sampling variation, the estimated

gradients D̂1,n and D̂2,n differ slightly from the population gradients. Without the ρ-box

constraint, the maximum is attained at λ∗. Since the estimated gradients are fixed across

bootstrap replications, p′λ∗ behaves as approximately normal, and by the previous argument

we would end up with cn(θ∗) = 1.15. With the ρ-box, however, the optimum is attained at λ∗∗

whose projection is the minimum of the projections of two points at which the two constraints

intersect with the right boundary of ρBd. Therefore, our bootstrap procedure mimics the

minimum of the two-means problem. This is true whenever the population gradients are close

to this situation, and hence restricting λ to the ρ-box provides a conservative distortion and
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plays a key role in establishing the uniform validity of our procedure.

The near flat face example in Figure 2 can be handled analogously. For example, for

some points such as θ∗∗, the relevant constraint is the third constraint (near flat face). A

linearized problem around θ∗∗ then looks akin to the right panel of Figure 3 without the red

line. Calculating a bootstrap critical value then yields a one-sided critical value cn(θ) = 1.645

(approximately) as before.

θ1

θ2

θ∗
λ1

λ2

−ρ−ρ

ρ−ρ

λ∗∗
λ∗

Figure 3: Minimum of two means and a ρ-box

4 Computational Aspects of the Method

TBA

5 Monte Carlo Simulations

TBA

6 Conclusions

TBA
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A Definitions, Notations, and Proofs of Main Theorems

A.1 Objects related to normalized empirical process

For each j and θ ∈ Θ, let m̄j,n(θ) ≡ 1
n

∑
i=1 mj(Xi, θ). Define

GP,j,n(θ) ≡
√
n(m̄j,n(θ)− EP [mj(Xi, θ)])/σP,j(θ). (A.1)

Let GP,n ≡ (GP,1,n, · · · ,GP,J,n). This is a vector of empirical processes on Θ.

Under Assumptions A.1-A.4 in Bugni, Canay, and Shi (2015)(Assumptions 3.2-(iv) and 3.4 in the main

text), one obtains various desirable properties (Lemma C.1 in Bugni, Canay, and Shi (2014)) including the

Donsker property, so that for any ε, η > 0, there exists N ∈ N such that supP∈P ρBL(GP,n,GP ) = o(1),

where GP is a vector of Gaussian processes with covariance kernel QP (θ, θ′) whose (j, k)-th element is given

by EP [(mj(Xi, θ) − EP [mj(Xi, θ)])(mk(Xi, θ
′) − EP [mk(Xi, θ

′)])]/(σj,P (θ)σk,P (θ′)). We then let ΩP (θ) ≡
QP (θ, θ). One also obtains that σ̂n,j/σP,j →p 1 uniformly in P and θ.

Define hP,j,n(θ) ≡
√
nEP [mj(Xi, θ)]/σP,j(θ). Let DP (θ) be a J×d matrix whose j-th row is DP,j(θ)

′. Let

Gbj,n(θ) be the normalized bootstrap empirical process Gbj,n(θ) = 1√
n

(m̄b
j,n(θ) − m̄j,n(θ))/σ̂bj,n(θ), where for

a random sample {Xb
1 , · · · , Xb

n} from the empirical distribution, m̄b
j,n(θ) ≡ 1

n

∑
i=1 mj(X

b
i , θ) and σ̂bj,n(θ) ≡

({ 1
n

∑n
i=1 m(Xb

i , θ)− m̄b
j,n(θ)}2)1/2.

Let

h∆
n =

√
n(s(p,ΘI(P )) + s(−p,ΘI(P ))) (A.2)

denote the length of the projection of ΘI(P ) normalized by
√
n. (Recall from the definitions that the pro-

jection of any θ ∈ ΘI(P ) to the one-dimensional subspace spanned by the direction p lies in the interval

[−s(−p,ΘI(P )), s(p,ΘI(P ))].)

A.2 Objects related to critical values

Let Bd ≡ [−1, 1]d be the unit-box in Rd. Let ϕ : RJ[±∞] → RJ[−∞] be defined componentwise by

ϕj(ξj) ≡

0 if ξj ≥ −1

−∞ if ξj < −1
. (A.3)

Let ϕ∗ : RJ[±∞] → RJ[−∞] be a function such that

1. ϕ∗j (ξj) ≤ ϕj(ξj) for all ξj ∈ R[−∞],

2. ϕ∗j (·) is continuous,

3. ϕ∗j (ξj) = 0 for all ξj ≥ 0 and ϕ∗j (−∞) = −∞.

The existence of this function is ensured by Lemma D.8 in Bugni, Canay, and Shi (2015). Define

ζ̃P,j,n(θ) ≡ ϕ∗(κ−1
n hP,j,n(θ)), (A.4)

ζ̂j,n(θ) ≡ ϕ(κ−1
n m̄j,n(θ)/σ̂j,n(θ)) (A.5)

ζ̂∗j,n(θ) ≡ ϕ∗(κ−1
n m̄j,n(θ)/σ̂j,n(θ)), (A.6)

with

κn = o(n−1/2 (A.7)

Throughout, we use the following auxiliary linear programming problem and denote its value function by

U : RJ × RJ×d × RJ × R+ × R+.

U(α, β, γ, δ, ρ) ≡ sup
λ∈ρBd

〈p, λ〉

s.t. αj + β′jλ+ γj ≤ δ, j = 1, · · · , J. (A.8)
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Let

Λ(Ξ, ν, δ) = {λ ∈ Rd : Ξjλ ≤ δ − νj}, (A.9)

with νj = αj + γj for j = 1, . . . , J , νj = ρ for j = J + 1, . . . , J + 2d, yielding a (J + 2d) × 1 vector, and Ξ a

(J + 2d)× d matrix collecting in the first J rows the vectors βj , and below it the matrices Id and −Id.
We then define the following processes:

Zρh,n(p, c, θ) ≡ U(GP (θ), DP (θ), hP,n(θ), c, ρ) (A.10)

ZG,ρ
n (p, c, θ) ≡ U(GP (θ), DP (θ), ζ̃P,n(θ), c, ρ) (A.11)

Zb,ρn (p, c, θ) ≡ U(Gbn(θ), D̂n(θ), ζ̂n(θ), c, ρ) (A.12)

Zb∗,ρn (p, c, θ) ≡ U(Gbn(θ), D̂n(θ), ζ̂∗n(θ), c, ρ). (A.13)

We then define the corresponding critical values by

ch,n(θ) ≡ inf{c ∈ R+ : P (Zρh,n(p, c, θ) ≥ 0 ≥ −Zρh,n(−p, c, θ)) ≥ 1− α} (A.14)

cn(θ) ≡ inf{c ∈ R+ : P (ZG,ρ
n (p, c, θ) ≥ 0 ≥ −ZG,ρ

n (−p, c, θ)) ≥ 1− α} (A.15)

ĉn(θ) ≡ inf{c ∈ R+ : P (Zb,ρn (p, c, θ) ≥ 0 ≥ −Zb,ρn (−p, c, θ)) ≥ 1− α} (A.16)

ĉ∗n(θ) ≡ inf{c ∈ R+ : P (Zb∗,ρn (p, c, θ) ≥ 0 ≥ −Zb∗,ρn (−p, c, θ)) ≥ 1− α}. (A.17)

A.3 Relevant sets and functions of λ

For each λ ∈ Rd, define

uj,n,θ(λ) ≡
√
nm̄j,n(θ + λ/

√
n)/σ̂j(θ + λ/

√
n)− cn(θ + λ/

√
n) (A.18)

vj,n,θ(λ) ≡ GP,j,n(θ) +DP,j(θ)
′λ+ hP,j,n(θ)− cn(θ). (A.19)

wj,n,θ(λ) ≡ GP,j(θ) +DP,j(θ)
′λ+ hP,j,n(θ)− cn(θ). (A.20)

Below, for each θ ∈ Θ and ρ > 0 we let the associated level sets be defined as

Un(θ) ≡
{
λ ∈ ρBd : uj,n,θ(λ) ≤ 0, ∀j = 1, . . . , J

}
, (A.21)

Vn(θ) ≡
{
λ ∈ ρBd : vj,n,θ(λ) ≤ 0, ∀j = 1, . . . , J

}
, (A.22)

Wn(θ) ≡
{
λ ∈ ρBd : wj,n,θ(λ) ≤ 0, ∀j = 1, . . . , J

}
. (A.23)

Let

V −δn (θ) ≡
{
λ ∈ ρBd : vj,n,θ(λ) ≤ −δ, ∀j = 1, . . . , J

}
, (A.24)

W−δn (θ) ≡
{
λ ∈ ρBd : wj,n,θ(λ) ≤ −δ, ∀j = 1, . . . , J

}
. (A.25)

Let KP be a (J + 2d)× d matrix collecting the first J rows of the matrix DP , and below it the matrices

Id and −Id.

A.4 Notation on convergence

For any sequence of random variables {Xn} and a positive sequence an, we write Xn = oP(an) if for any

ε, η > 0, there is N ∈ N such that supP∈P P (|Xn/an| > ε) < η,∀n ≥ N . We also write Xn = OP(an) if for

any η > 0, there is a M ∈ R+ and N ∈ N such that supP∈P P (|Xn/an| > M) < η, ∀n ≥ N .

A.5 Proofs of Main Theorems

Proof of Theorem 3.1: Following Andrews and Guggenberger (2009), we index distributions by a vector of

nuisance parameters relevant for the asymptotic size. For this, let γ ≡ (γ1, γ2, γ3), where γ1 = (γ1,1, · · · , γ1,J)
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with

γ1,j(θ) = σ−1
P,j(θ)EP [mj(Xi, θ)], j = 1, · · · , J, (A.26)

γ2 = (vech(ΩP (θ)), vec(DP (θ))), and γ3 = P . Let {Pγn , θn} ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} be a sequence such

that

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI (P )

P (p′θ ∈ CIn) = lim inf
n→∞

Pγn(p′θn ∈ CIn). (A.27)

We then let {ln} be a subsequence of {n} such that

lim inf
n→∞

Pγn(p′θn ∈ CIn) = lim
n→∞

Pγln (p′θln ∈ CIln). (A.28)

Recall that

CIln = [−s(−p, Cln(ĉln)), s(p, Cln(ĉln))].

By Lemma B.1, if h∆
ln ≤ κ

1/5
ln

it suffices to show that limn→∞ Pγln
(
s(p, Uln(θln)) ≥ 0 ≥ −s(−p, Uln(θln))

)
≥

1 − α. If h∆
ln > κ

1/5
ln

it suffices to show that for each θ1
ln ∈ H(−p,ΘI(P )) and for each θ2

ln ∈ H(p,ΘI(P )),

min{limn→∞ Pγln (s(−p, Uln(θ1
ln)) ≥ 0) , limn→∞ Pγln (s(p, Uln(θ2

ln)) ≥ 0)} ≥ 1 − α. We argue explicitly for

the case that h∆
ln ≤ κ

1/5
ln

; the other case is similar.

Define A1n ≡ {Wln(θln) 6= ∅ ∩ Vln(θln) 6= ∅ ∩ Uln(θln) 6= ∅)}. It then follows that

Pγln
(
s(p, Uln(θln)) ≥ −ε ∩ s(−p, Uln(θln)) ≥ −ε

)
≥ Pγln

(
{s(p, Uln(θln)) ≥ −ε} ∩ {s(−p, Uln(θln)) ≥ −ε} ∩A1n

)
≥ Pγln

({
s(p, Vln(θln)) ≥ 0

}
∩
{
s(−p, Vln(θln)) ≥ 0

}
∩A1n

)
− Pγln

({
max

q∈{p,−p}

∣∣s(q, Uln(θln))− s(q, Vln(θln))
∣∣ ≥ ε} ∩A1n

)
≥ Pγln

({
s(p, Vln(θln)) ≥ 0

}
∩
{
s(−p, Vln(θln)) ≥ 0

}
∩A1n

)
− ε

for n sufficiently large, where the last inequality follows from Lemma B.5, observing that by Lemma B.2

(ii)-(iv), cn satisfies the conditions of Lemma B.5.

Taking limits as n→∞ and noting that ε is arbitrary, we have

lim
n→∞

Pγln
(
s(p, Uln(θln)) ≥ 0 ≥ −s(−p, Uln(θln))

)
≥ lim
n→∞

Pγln
((
s(p, Uln(θln)) ≥ 0 ≥ −s(−p, Uln(θln))

)
∩A1n

)
.

(A.29)

Define A2n ≡
{
Wln(θln) 6= ∅ ∩ Vln(θln) 6= ∅

}
and note that A2n = A1n ∪

{
Wln(θln) 6= ∅ ∩ Vln(θln) 6=

∅ ∩ Uln(θln) = ∅
}

. Therefore,

Pγln
({
s(p, Vln(θln)) ≥ 0 ≥ −s(−p, Vln(θln))

}
∩A1n

)
= Pγln

({
s(p, Vln(θln)) ≥ 0 ≥ −s(−p, Vln(θln))

}
∩A2n

)
− Pγln

({
s(p, Vln(θln)) ≥ 0 ≥ −s(−p, Vln(θln))

}
∩
{
Wln(θln) 6= ∅ ∩ Vln(θln) 6= ∅ ∩ Uln(θln) = ∅

})
≥ Pγln

({
s(p, Vln(θln)) ≥ 0 ≥ −s(−p, Vln(θln))

}
∩A2n

)
− η, (A.30)

for n sufficiently large where the second inequality follows from Lemma B.4. Taking limits as n → ∞ and

noting that η > 0 is arbitrary, we have

lim
n→∞

Pγln
({
s(p, Vln(θln)) ≥ 0 ≥ −s(−p, Vln(θln))

}
∩A1n

)
≥ lim
n→∞

Pγln
({
s(p, Vln(θln)) ≥ 0 ≥ −s(−p, Vln(θln))

}
∩A2n

)
. (A.31)

Recall that for each q ∈ {p,−p}, s(q, Vn(θ)) and Zρh(q, cn, θ) are both value functions of linear programs, where

the program defining s(q, Vn(θ)) involves the empirical process GP,j,n, while that for Zρh(q, cn, θ) involves the

limit Gaussian process GP,j . Since GP,n converges weakly to GP in C(Θ), there is a Skorokhod representation

G∗P,n and G∗P on some probability space (Ω,P) such that G∗P,n
d
= GP,n and G∗P

d
= GP and G∗P,n

a.s.→ G∗.
Hence, for any n, replacing G∗P,n(θ) with G∗P (θ) in the linear programming problem corresponds to only
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shifting the constraints while keeping the gradient fixed. By Theorem 14 in Wets (1985), the value function

of the linear program is continuous. Therefore, for any η > 0 and any sequence θn ∈ Θ, there is δ > 0 such

that maxj |G∗P,j,n(θn) − G∗P,j(θn)| < δ implies |s(q, Vn(θn)) − Zρh(q, cn, θn)| < η, and Pγn(maxj |GP,j,n(θn) −
GP,j(θn)| < δ) = P(maxj |G∗P,j,n(θn)−G∗P,j(θn)| < δ)→ 1 as n→∞. Therefore, for any η > 0, we have

lim
n→∞

Pγln
({
s(p, Vln(θln)) ≥ −η

}
∩ {s(−p, Vln(θln)) ≥ −η} ∩A2n

)
≥ lim
n→∞

Pγln
({
Zρh(p, cln , θln) ≥ 0 ≥ −Zρh(−p, cln , θln)

}
∩A2n

)
− Pγln

({
max

q∈{p,−p}
|s(q, Vn(θln))−Zρh(q, cln , θln)| ≥ η

}
∩A2n

)
≥ lim
n→∞

Pγln
({
Zρh(p, cln , θln) ≥ 0 ≥ −Zρh(−p, cln , θln)

}
∩A2n

)
− Pγln

({
max
j
|GP,j,ln(θln)−GP,j(θln)| ≥ δ

}
∩A2n

)
≥ lim
n→∞

Pγln
({
Zρh(p, cln , θln) ≥ 0 ≥ −Zρh(−p, cln , θln)

}
∩
{
Wln(θln) 6= ∅

})
− Pγln

({
Wln(θln) 6= ∅ ∩ Vln(θln) = ∅

})
≥ lim
n→∞

Pγln
({
Zρh(p, cln , θln) ≥ 0 ≥ −Zρh(−p, cln , θln)

})
− η

≥ lim
n→∞

Pγln
({
Zρh(p, ch,ln , θln) ≥ 0 ≥ −Zρh(−p, ch,ln , θln)

})
− η ≥ 1− α− η, (A.32)

for n sufficiently large where the fourth inequality follows from
{
Wln(θln) 6= ∅

}
= A2n ∪

{
Wln(θln) 6=

∅∩Vln(θln) = ∅
}

and Lemma B.3 and the fifth inequality follows from the fact that cn ≥ ch,n with probability

approaching 1 by Lemma B.2 and that Zρh(p, cln , θln) ≥ 0 ≥ −Zρh(−p, cln , θln implies Wln(θln) 6= ∅. Since η

is arbitrary, we then have

lim
n→∞

Pγln
({
s(p, Vln(θln)) ≥ 0 ≥ −s(−p, Vln(θln))

}
∩A2n

)
≥ 1− α. (A.33)

The conclusion of the lemma now follows from (A.27), (A.28),(A.29), (A.31), and (A.33).

Proof of Theorem 3.2 To establish the result, observe that for any given θ ∈ Θ the event

max
j=1,...,J

{√
nm̄∗j (θ)+

σ̂n,j
+ ζ̂j,n(θ)

}
≤ c (A.34)

implies the event {
sup
λ∈ρBd

p′λ : max
j=1,...,J

{√
nm̄∗j (θ)+

σ̂n,j
+ D̂n,j(θ)λ+ ζ̂j,n(θ)

}
≤ c

}
≥ 0. (A.35)

This is so because if maxj=1,...,J

{√
nm̄∗j (θ)+

σ̂n,j
+ ζ̂j,n(θ)

}
≤ c, then due to ζ̂j,n(θ) ≤ 0, λ = 0 is feasible in the

outer maximization problem in (A.35), hence the value of (A.35) is greater than or equal to p′0 = 0. In turn

this yields that ĉn ≤ cASn .

B Main Lemmas

Fix ρ > 0 as discussed in Section 3.4. In all Lemmas below, α is assumed less than 1/2. Throughout, h∆
n is

as defined in equation A.2.

Lemma B.1: Suppose Assumptions 3.1-3.4 hold. Let ĉn be defined as in (A.16). If h∆
n ≤ κ

1/5
n , it follows

that

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI (P )

P (p′θ ∈ CIn) ≥ lim inf
n→∞

inf
P∈P

inf
θ∈ΘI (P )

P
(
s(p, Un(θ)) ≥ 0 ≥ −s(−p, Un(θ))

)
. (B.1)
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If h∆
n > κ

1/5
n , it follows that

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI (P )

P (p′θ ∈ CIn)

≥ min

{
lim inf
n→∞

inf
P∈P

P (s(−p, Un(θ1
n)) ≥ 0) , lim inf

n→∞
inf
P∈P

P (s(p, Un(θ2
n)) ≥ 0)

}
,

for each θ1
n ∈ H(−p,ΘI(P )) and θ2

n ∈ H(p,ΘI(P )).

Lemma B.2: Suppose Assumptions 3.1-3.4 hold. Let ĉn be defined as in (A.16). Let Υ(P ) = ∂ΘI(P ) if

h∆
n > κ

1/5
n , and Υ(P ) = ΘI(P ) if h∆

n ≤ κ
1/5
n . Then, there exists a sequence {cn : Θ→ R+, n = 1, 2, · · · } such

that (i) ĉn(θ) ≥ cn(θ) with probability approaching 1 uniformly over {(P, θ) : P ∈ P, θ ∈ Υ(P )}; (ii) for all

P ∈ P, cn(θ) ≤M for all θ ∈ Θ for some M > 0; (iii) for any ε, η > 0, there exists N ∈ N such that

sup
P∈P

sup
θ∈Υ(P )

P ( sup
θ′∈(θ+n−1/2ρBd)∩Θ

|cn(θ′)− cn(θ)| > ε) < η, ∀n ≥ N ; (B.2)

(iv) for any ε > 0, there exists N ′ ∈ N such that infP∈P P (cn(θ) ≥ cρh,n(θ),∀θ ∈ Θ) > 1− ε for all n ≥ N ′.

Lemma B.3: Suppose Assumptions 3.1-3.4 hold. Let Υ(P ) = H(p,ΘI(P )) if h∆
n > κ

1/5
n , and Υ(P ) =

ΘI(P ) if h∆
n ≤ κ

1/5
n . Then, (i) for any η, there exist δ > 0 and N ∈ N such that

sup
P∈P

sup
θ∈Υ(P )

P ({Wn(θ) 6= ∅} ∩ {(W−δn (θ))o = ∅}) < η, ∀n ≥ N (B.3)

(ii) Furthermore, for any η > 0, there exists a N ∈ N such that

sup
P∈P

sup
θ∈Υ(P )

P ({Wn(θ) 6= ∅} ∩ {Vn(θ) = ∅}) < η, ∀n ≥ N. (B.4)

Lemma B.4: Suppose Assumptions 3.1-3.4 hold. Let Υ(P ) = H(p,ΘI(P )) if h∆
n > κ

1/5
n , and Υ(P ) =

ΘI(P ) if h∆
n ≤ κ

1/5
n . Then, (i) for any η, there exist δ > 0 and N ∈ N such that

sup
P∈P

sup
θ∈Υ(P )

P ({Wn(θ) 6= ∅} ∩ {Vn(θ) 6= ∅} ∩ {(V −δn (θ))o = ∅}) < η, ∀n ≥ N. (B.5)

(ii) Furthermore, for any η > 0, there exists a N ∈ N such that

sup
P∈P

sup
θ∈Υ(P )

P ({Wn(θ) 6= ∅} ∩ {Vn(θ) 6= ∅} ∩ {Un(θ) = ∅}) < η, ∀n ≥ N. (B.6)

Lemma B.5: Suppose Assumptions 3.1-3.4 hold. Let Υ(P ) = H(p,ΘI(P )) if h∆
n > κ

1/5
n , and Υ(P ) =

ΘI(P ) if h∆
n ≤ κ

1/5
n . Let cn : Θ→ R+ be such that for all P ∈ P, cn(θ) ≤ M for all θ ∈ Θ for some M > 0,

and for any ε, η > 0, there exists N ∈ N such that

sup
P∈P

sup
θ∈Υ(P )

P ∗( sup
θ′∈(θ+n−1/2ρBd)∩Θ

|cn(θ)− cn(θ′)| > ε) < η, ∀n ≥ N. (B.7)

Then, for any ε, η > 0, there exists N ∈ N such that

sup
P∈P

sup
θ∈Υ(P )

P ∗
(
{|s(p, Un(θ))− s(p, Vn(θ))| > ε}

∩ {Wn(θ) 6= ∅ ∩ Vn(θ) 6= ∅ ∩ Un(θ) 6= ∅}
)
< η, ∀n ≥ N. (B.8)

[25]



Lemma B.6: Suppose Assumptions 3.1-3.4 hold. Let Υ(P ) = H(p,ΘI(P )) if h∆
n > κ

1/5
n , and Υ(P ) =

ΘI(P ) if h∆
n ≤ κ

1/5
n . Let cn : Θ→ R+ be such that for all P ∈ P, cn(θ) ≤ M for all θ ∈ Θ for some M > 0,

and for any ε, η > 0, there exists N ∈ N such that

sup
P∈P

sup
θ∈Υ(P )

P ∗( sup
θ′∈(θ+n−1/2ρBd)∩Θ

|cn(θ)− cn(θ′)| > ε) < η, ∀n ≥ N. (B.9)

Then, for any ε, η > 0, there exists N ′ ∈ N such that

sup
P∈P

sup
θ∈Υ(P )

P ∗( sup
λ∈ρBd∩

√
n(Θ−θ)

| max
j=1,··· ,j

uj,n,θ(λ)− max
j=1,··· ,j

vj,n,θ(λ)| ≥ ε) < η, ∀n ≥ N ′. (B.10)

Lemma B.7: Let cn be defined as in (A.15). Suppose that Assumptions 3.1-3.4 hold and that for all P ∈ P,

cn(θ) ≤ M for all θ ∈ Θ for some M > 0. Let Υ(P ) = H(p,ΘI(P )) if h∆
n > κ

1/5
n , and Υ(P ) = ΘI(P ) if

h∆
n ≤ κ

1/5
n . Then, there exists a c > 0 such that lim infn→∞ infP∈P infθ∈Υ(P ) cn(θ) ≥ c.

Lemma B.8: For each n and for each θ ∈ Θ, ĉn(θ) ≥ ĉ∗n(θ), P − a.s. for any P ∈ P.

Lemma B.9: Suppose Assumptions 3.1-3.4 hold. Let Υ(P ) = ∂ΘI(P ) if h∆
n > κ

1/5
n , and Υ(P ) = ΘI(P )

if h∆
n ≤ κ

1/5
n . Then, for any ε > 0,

lim sup
n→∞

sup
P∈P

sup
θ∈Υ(P )

P (|ĉ∗n(θ)− cn(θ)| > ε) = 0. (B.11)

Lemma B.10: Let cn be defined as in (A.15). Let Υ(P ) = ∂ΘI(P ) if h∆
n > κ

1/5
n , and Υ(P ) = ΘI(P ) if

h∆
n ≤ κ

1/5
n . Then, (i) For all P ∈ P, cn(θ) ≤ M for all θ ∈ Θ for some M > 0; (ii) For any ε, η > 0, there

exists N ∈ N such that

lim sup
n→∞

sup
P∈P

sup
θ∈Υ(P )

P
(

sup
θ′∈(θ+n−1/2ρBd)∩Θ

|cn(θ)− cn(θ′)| > ε
)
< η, ∀n ≥ N. (B.12)

Lemma B.11: Suppose Assumptions 3.1-3.4 hold. Let Υ(P ) = H(p,ΘI(P )) if h∆
n > κ

1/5
n , and Υ(P ) =

ΘI(P ) if h∆
n ≤ κ

1/5
n . Consider sequences such that for θn ∈ Υ(Pn), for each j = 1, . . . , J1, κ−1

n hP,j,n(θn) →
πj ∈ [−∞, 0]. Define J ∗ ≡ {j = 1, · · · , J : πj ∈ (−∞, 0]}. Then J ∗ is non-empty.
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B.1 Proofs of Lemmas

Proof of Lemma B.1: Consider first the case h∆
n ≤ κ

1/5
n . Note that for any n, the following relations hold:

p′θn ∈ CIn
⇔− s(−p, Cn(ĉn)) ≤ p′θn ≤ s(p, Cn(ĉn))

⇐

{
sup−p′ϑ
s.t. ϑ ∈ Θ,

√
nm̄n,j(ϑ)

σ̂n,j(ϑ)
≤ cn(ϑ), j = 1, . . . , J

}
≥ −p′θn

∩

{
sup p′ϑ

s.t. ϑ ∈ Θ,
√
nm̄n,j(ϑ)

σ̂n,j(ϑ)
≤ cn(ϑ), j = 1, . . . , J

}
≥ p′θn

⇔

{
supλ∈√n(Θ−θn)−p′λ

s.t.
√
n m̄n,j(θn+λ/

√
n)

σ̂n,j(θn+λ/
√
n)

≤ cn(θn + λ/
√
n), j = 1, . . . , J

}
≥ 0

∩

{
supλ∈√n(Θ−θn) p

′λ

s.t.
√
n m̄n,j(θn+λ/

√
n)

σ̂n,j(θn+λ/
√
n)

≤ cn(θn + λ/
√
n), j = 1, . . . , J

}
≥ 0,

⇐

{
supλ∈√n(Θ−θn)∩ρBd −p

′λ

s.t.
√
n m̄n,j(θn+λ/

√
n)

σ̂n,j(θn+λ/
√
n)

≤ cn(θn + λ/
√
n), j = 1, . . . , J

}
≥ 0

∩

{
supλ∈√n(Θ−θn)∩ρBd p

′λ

s.t.
√
n m̄n,j(θn+λ/

√
n)

σ̂n,j(θn+λ/
√
n)

≤ cn(θn + λ/
√
n), j = 1, . . . , J

}
≥ 0, (B.13)

where the one sided implication in the third row follows from Lemma B.2-(i), and the last one sided implication

follows from the addition of the ρ-box constraints. In (B.13), λ is constrained to be in
√
n(Θ − θ). By

Assumption 3.3 (iv) and ρ/
√
n→ 0, for any sequence θn ∈ Θ,

ρBd ∩
√
n(Θ− θn) = ρBd , (B.14)

for all n sufficiently large. Hence, in what follows, we make the requirement λ ∈
√
n(Θ− θ) implicit whenever

we consider ρBd ∩
√
n(Θ− θn). It then follows, defining γln , θln as in the proof of Theorem 3.1, that

Pγln (p′θln ∈ CIn) ≥ Pγln
(
s(p, Uln(θln)) ≥ 0 ≥ −s(−p, Uln(θln))

)
Consider now the case that h∆

n > κ
1/5
n . Let again (Pγn , θn) ∈ {(P, θ) : P ∈ P, θ ∈ ΘI} be a sequence of

distributions such that

lim
n→∞

Pγn(p′θn ∈ CIn) = lim inf
n→∞

inf
P∈P

inf
θ∈ΘI (P )

P (p′θ ∈ CIn). (B.15)

Parametrize the corresponding value of p′θn as

p′θn = −s(−p,ΘI(Pγn)) + ςn
h∆
n√
n

= s(p,ΘI(Pγn))− (1− ςn)
h∆
n√
n
,

where ςn ∈ [0, 1]. To simplify notation, in what follows we omit the subscript n from ς, and we write ΘI for

ΘI(Pγn). Then we have

Pγn(p′θn ∈ CIn)

=Pγn(−s(−p, Cn(ĉn)) ≤ p′θn ≤ s(p, Cn(ĉn)))

=Pγn(−s(−p, Cn(ĉn)) ≤ −s(−p,ΘI) + ς
h∆
n√
n
≤ s(p, Cn(ĉn)))

=Pγn(−(s(−p, Cn(ĉn))− s(−p,ΘI))− ς
h∆
n√
n
≤ 0 ≤ s(p, Cn(ĉn))− s(p,ΘI) + (1− ς) h

∆
n√
n

) (B.16)

[27]



The event inside equation (B.16) can be expressed as follows{
s(−p, Cn(ĉn)) ≥ s(−p,ΘI(P )))− ς h

∆
n√
n
∩ s(p, Cn(ĉn)) ≥ s(p,ΘI(P ))− (1− ς) h

∆
n√
n

}
⇐

{
sup−p′ϑ
s.t. ϑ ∈ Θ,

√
nm̄n,j(ϑ)

σ̂n,j(ϑ)
≤ cn(ϑ), j = 1, . . . , J

}
≥ s(−p,ΘI)− ς

h∆
n√
n

∩

{
sup p′ϑ

s.t. ϑ ∈ Θ,
√
nm̄n,j(ϑ)

σ̂n,j(ϑ)
≤ cn(ϑ), j = 1, . . . , J

}
≥ s(p,ΘI)− (1− ς) h

∆
n√
n

⇔

{
sup(θ,λ)−p′λ

s.t. θ ∈ H(−p,ΘI),
√
n m̄n,j(θ+λ/

√
n)

σ̂n,j(θ+λ/
√
n)

≤ cn(θ + λ/
√
n), j = 1, . . . , J

}
≥ −ςh∆

n

∩

{
sup(θ,λ) p

′λ

s.t. θ ∈ H(p,ΘI),
√
n m̄n,j(θ+λ/

√
n)

σ̂n,j(θ+λ/
√
n)

≤ cn(θ + λ/
√
n), j = 1, . . . , J

}
≥ −(1− ς)h∆

n , (B.17)

⇐

{
supλ∈ρBd −p

′λ

s.t.
√
n m̄n,j(θ

1
n+λ/

√
n)

σ̂n,j(θ1n+λ/
√
n)

≤ cn(θ1
n + λ/

√
n), j = 1, . . . , J

}
≥ −ςh∆

n

∩

{
supλ∈ρBd p

′λ

s.t.
√
n m̄n,j(θ

2
n+λ/

√
n)

σ̂n,j(θ2n+λ/
√
n)

≤ cn(θ2
n + λ/

√
n), j = 1, . . . , J

}
≥ −(1− ς)h∆

n , (B.18)

where the one sided implication in the second line follows because uniformly in θ, ĉn(θ) ≥ cn(θ) by Lemma B.2,

and the last one sided implication follows from the addition of the ρ-box constraints, and picking sequences

θ1
n ∈ H(−p,ΘI) and θ2

n ∈ H(p,ΘI). Recall that h∆
n > κ

1/5
n , and that the value of each program in B.18 is

bounded in direction p by
√
dρ, and in direction −p by −

√
dρ. Because h∆

n is diverging to infinity, we have

that the above probability is minimized for ς ∈ {0, 1}, yielding the claim.

Proof of Lemma B.2: By Assumptions 3.1-3.4, (i) follows from Lemmas B.8 and B.9. (ii) and (iii) then

follow from Lemma B.10. (iv) follows from (A.10)-(A.11), (A.14)-(A.15), and hP,j,n ≤ ζ̃P,j,n for all j.

Proof of Lemma B.3: We first show (B.3). Let θ ∈ Υ(P ) be given. By Theorem 22.1 in Rockafellar (1970),

a solution to the system of linear inequalities defining Wn(θ) exists if and only if for all µ ∈ RJ+2d
+ such that

µ′KP (θ) = 0, one has µ′gP (θ) ≥ 0, with gP (θ) the J + 2d× 1 vector with components

gP,j(θ) ≡ cn(θ)−GP,j(θ)− hP,j,n(θ), j = 1, . . . , J (B.19)

gP,j(θ) ≡ ρ, j = J + 1, . . . , J + 2d (B.20)

where hP,j,n(θ) = 0 for j = J1 + 1, · · · , J. By Theorem 22.2 in Rockafellar (1970), a solution to the system of

strict linear inequalities (which in turn define (W−δn (θ))o)

GP,j(θ) +DP,j(θ)
′λ+ hP,j,n(θ) < cn(θ)− δ, j = 1, . . . , J, (B.21)

λj < ρ− δ, j = J + 1, . . . , J + d, (B.22)

−λj < ρ− δ, j = J + d+ 1, . . . , J + 2d, (B.23)

exists if and only if for all µ ∈ RJ+2d
+ such that µ 6= 0 and µ′KP (θ) = 0, one has µ′(gP (θ) − δ1J+2d) > 0,

where 1J+2d is a J + 2d-dimensional vector of ones. Define

M(θ) ≡ {µ ∈ RJ+2d
+ : µ′KP (θ) = 0}, M̃(θ) ≡ {µ ∈ RJ+2d

+ : µ 6= 0, µ′KP (θ) = 0}. (B.24)
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Then, one may write

P (Wn(θ) 6= ∅ ∩ (W−δn (θ))o = ∅) = P ({µ′gP (θ) ≥ 0,∀µ ∈M(θ)} ∩ {µ′(gP (θ)− δ1J+2d) > 0, ∀µ ∈ M̃(θ)}c)

= P ({µ′gP (θ) ≥ 0,∀µ ∈M(θ)} ∩ {µ′(gP (θ)− δ1J+2d) ≤ 0, ∃µ ∈ M̃(θ)})

= P ({µ′gP (θ) ≥ 0,∀µ ∈M(θ)} ∩ {µ′gP (θ) ≤ δµ′1J+2d, ∃µ ∈ M̃(θ)}).
(B.25)

Note that the set M̃(θ) is a (possibly unbounded) non-stochastic convex polyhedron. Hence, by Carathéodory’s

theorem, there exist {νt ∈ M̃(θ), t = 1, · · · , T} with T ≤ J+2d+1 such that any µ ∈ M̃(θ) can be represented

as

µ =

T∑
t=1

atνt, (B.26)

where at ≥ 0 and
∑T
t=1 at = 1. Hence, if µ ∈ M̃(θ) satisfies µ′gP (θ) ≤ δµ′1J+2d, we have

T∑
t=1

atν
′
tgP (θ) ≤ δ

T∑
t=1

atν
′
t1J+2d. (B.27)

However, due to at ≥ 0,∀t,
∑T
t=1 at = 1, µ 6= 0, and νt ∈ M(θ), this means νt′gP (θ) ≤ δνt′1J+2d for some

t ∈ {1, . . . , T}. Furthermore, since νt ∈ M̃(θ) ⊂M(θ), we have 0 ≤ νt′gP (θ). Therefore,

P ({µ′gP (θ) ≥ 0,∀µ ∈M(θ)} ∩ {µ′gP (θ) ≤ δµ1J+2d,∃µ ∈ M̃(θ)})

≤ P (0 ≤ νt′gP (θ) ≤ δνt′1J+2d, ∃t ∈ {1, · · · , T}) ≤
T∑
t=1

P (0 ≤ νt′gP (θ)

νt′1J+2d
≤ δ). (B.28)

Suppose for the moment that there are no moment equalities and J = J1. Consider first the case that νt

assigns positive weight to at least constraints in {J+1, . . . , J+2d}. By choosing δ < ρ we obtain νt′gP (θ)
νt′1J+2d

> δ.

Consider now the case that νt assigns positive weight also to constraints in {1, . . . , J}. By (B.19), for

any given νt ∈ M̃(θ), νt′gP (θ)
νt′1J+2d

is then a normal random variable with variance (νt′1J+2d)
−2µ′kΩP (θ)νt. By

Assumption 3.2 (iv), there exists a constant ω > 0 that does not depend on θ such that the smallest eigenvalue

of ΩP (θ) is bounded from below by ω for all θ. Hence, letting ‖ · ‖p denote the p-norm in RJ+2d, we have

µ′kΩP (θ)νt

‖νt‖21
≥ ω‖νt‖22

(J + 2d)‖νt‖22
≥ ω

J + 2d
. (B.29)

Therefore, the variance of the normal random variable in (B.28) is uniformly bounded away from 0, which in

turn allows one to find δ > 0 such that P (0 ≤ νt′gP (θ)
νt′1J+2d

≤ δ) ≤ η/K. This ensures (B.3) when no moment

equalities are present.

For the case where moment equalities are present, the same conclusion holds. If νt assigns positive weight

only to constraints in {J + 1, . . . , J + 2d} the same conclusion as before holds. We therefore consider the

case that νt assigns positive weight to at least one constraints in {1, . . . , J}; to further simplify notation, we

assume that νt assigns zero weight to constraints in {J + 1, . . . , J + 2d}. Recall that the moment equalities

have indexes j = J1 + 1, . . . , J1 + J2 and are each written as two moment inequalities, therefore yielding a

total of 2J2 inequalities with:

DP,j+J2(θ) = −DP,j(θ) for j = J1 + 1, . . . , J1 + J2,

gP,j(θ) = cn(θ)−GP,j(θ) for j = J1 + 1, . . . , J1 + J2,

gP,j+J2(θ) = cn(θ) + GP,j(θ) for j = J1 + 1, . . . , J1 + J2.

(B.30)

For any µ ∈ M̃(θ), (B.30) implies

J1+2J2∑
j=J1+1

µjgP,j(θ) = cn(θ)

J1+J2∑
j=J1+1

(µj + µj+J2) +

J1+J2∑
j=J1+1

(µj − µj+J2)GP,j(θ). (B.31)
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For each j = 1, · · · , J1 + J2, define

ν̃tj ≡

νtj j = 1, · · · , J1

νtj − νtj+J2 j = J1 + 1, · · · , J1 + J2.
. (B.32)

We then let ν̃t ≡ (ν̃t1, · · · , ν̃tJ1+J2)′. Then, one may write

νt′gP (θ) =

J1+J2∑
j=1

ν̃tjGP,j(θ) + cn(θ)

J∑
j=1

νtj +

J1∑
j=1

νtjhP,j,n(θ). (B.33)

Suppose ν̃t 6= 0. Then, by (B.33), Assumption 3.2 (iv) and arguing as in the case without moment equalities,

there exists δ > 0, P (0 ≤ νt′gP (θ)
νt′1J+2d

≤ δ) ≤ η/K. Now, consider the case ν̃t = 0. Since νt ∈ M̃(θ), this occurs

only if νtj = 0 for all j = 1, · · · , J1 and νtj = µj+J2 for all j = J1 + 1, · · · , J1 + J2, while νtj > 0 for some

j = J1 + 1, · · · , J1 + J2. Then, by (B.33) and Lemma B.7, we have

νt′gP (θ)

νt′1J+2d
=
cn(θ)

∑J
j=1 ν

t
j∑J

j=1 ν
t
j

= cn(θ) ≥ c̄ > 0. (B.34)

Hence, letting δ < min{c̄, ρ}, we have P (0 ≤ νt′gP (θ)
νt′1J+2d

≤ δ) = 0 ≤ η/K. Thus, by (B.28), it follows that

P (Wn(θ) 6= ∅∩ (W−δn (θ))o = ∅) < η uniformly on {(θ, P ) : θ ∈ Υ(P ), P ∈ P}. This therefore establishes (B.3).

We now show (B.4). Suppose that (W−δn (θ))o 6= ∅ for δ > 0. By Theorem 2.8.2 in van der Vaart and

Wellner (2000), GP,n weakly converges to GP uniformly in P ∈ P. We take a Skorkhod representations of GP
and GP,n and denote them by G∗P and G∗P,n. Then, G∗P,n → G∗P with probability one. Since the constraints

are linear, there exists N ∈ N that does not depend on θ such that:

sup
λ∈ρBd

|G∗P,j(θ) +DP,j(θ)
′λ+ hP,j,n(θ) + cn(θ)−G∗P,j,n(θ)−DP,j(θ)′λ− hP,j,n(θ)− cn(θ)|

= |G∗P,j(θ)−G∗P,j,n(θ)| < δ, ∀n ≥ N, a.s. (B.35)

Therefore, for any θ ∈ (W−δn (θ))o, we have

cn(θ) > δ + G∗P,j(θ) +DP,j(θ) + hP,j,n(θ) ≥ G∗P,j,n(θ) +DP,j(θ) + hP,j,n(θ), (B.36)

and hence (W−δn (θ))o ⊂ Vn(θ) for all n ≥ N with probability 1. This leads us to conclude that for any η > 0,

sup
P∈P

sup
θ∈Υ(P )

P ((W−δn (θ))o 6= ∅ ∩ Vn(θ) = ∅) < η/2, ∀n ≥ N. (B.37)

By (B.3) and the triangle inequality, it then follows that

sup
P∈P

sup
θ∈Υ(P )

P (Wn(θ) 6= ∅ ∩ Vn(θ) = ∅)

≤ sup
P∈P

sup
θ∈Υ(P )

{
P (Wn(θ) 6= ∅ ∩ (W−δn (θ))o = ∅) + P ((W−δn (θ))o 6= ∅ ∩ Vnθ) = ∅)

}
< η. (B.38)

for all n sufficiently large. This establishes (B.4).

Proof of Lemma B.4: For any δ, η > 0, there exists N ∈ N such that

sup
P∈P

sup
θ∈Υ(P )

P ({Wn(θ) 6= ∅} ∩ {Vn(θ) 6= ∅} ∩ {(V −δn (θ))o = ∅})

≤ sup
P∈P

sup
θ∈Υ(P )

P ({Wn(θ) 6= ∅} ∩ {(W−δ/2n (θ))o = ∅} ∩ {Vn(θ) 6= ∅} ∩ {(V −δn (θ))o = ∅})

+ sup
P∈P

sup
θ∈Υ(P )

P ({Wn(θ) 6= ∅} ∩ {(W−δ/2n (θ))o 6= ∅} ∩ {Vn(θ) 6= ∅} ∩ {(V −δn (θ))o = ∅})

≤ sup
P∈P

sup
θ∈Υ(P )

P ({Wn(θ) 6= ∅} ∩ {(W−δ/2n (θ))o 6= ∅} ∩ {Vn(θ) 6= ∅} ∩ {(V −δn (θ))o = ∅}) + η/2, (B.39)
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for all n ≥ N , where the last inequality follows from Lemma B.3 (i) and

P ({Wn(θ) 6= ∅} ∩ {(W−δ/2n (θ))o = ∅} ∩ {Vn(θ) 6= ∅} ∩ {(V −δn (θ))o = ∅})

≤ P ({Wn(θ) 6= ∅} ∩ {(W−δ/2n (θ))o = ∅}). (B.40)

Furthermore,

P ({Wn(θ) 6= ∅} ∩ {(W−δ/2n (θ))o 6= ∅} ∩ {Vn(θ) 6= ∅} ∩ {(V −δn (θ))o = ∅}

≤ P ({(W−δ/2n (θ))o 6= ∅} ∩ {(V −δn (θ))o = ∅}) = P({(W ∗,−δ/2n (θ))o 6= ∅} ∩ {(V ∗,−δn (θ))o = ∅}), (B.41)

where W ∗n and V ∗n replace GP and GP,n in (A.25)-(A.24) by their Skorokhod representations G∗P and G∗P,n.

Arguing as in (B.37), it follows that there exists N ′ ∈ N that does not depend on θ such that (V ∗,−δn (θ))o ⊂
(W
−δ/2
n (θ))o, ∀n ≥ N ′,P− a.s. Hence,

P({(W−δ/2n (θ))o 6= ∅} ∩ {(V −δn (θ))o = ∅}) < η/2, ∀n ≥ N ′. (B.42)

The first conclusion of the lemma then follows from (B.39)-(B.42).

For the second claim, note that for any δ, η > 0, there exists N ∈ N such that

sup
P∈P

sup
θ∈Υ(P )

P ({Wn(θ) 6= ∅} ∩ {Vn(θ) 6= ∅} ∩ {Un(θ) = ∅})

≤ sup
P∈P

sup
θ∈Υ(P )

P ({Wn(θ) 6= ∅} ∩ {Vn(θ) 6= ∅} ∩ {(V −δn (θ))o 6= ∅} ∩ {Un(θ) = ∅})

+ sup
P∈P

sup
θ∈Υ(P )

P ({Wn(θ) 6= ∅} ∩ {Vn(θ) 6= ∅} ∩ {(V −δn (θ))o = ∅} ∩ {Un(θ) = ∅})

≤ sup
P∈P

sup
θ∈Υ(P )

P ({(V −δn (θ))o 6= ∅} ∩ {Un(θ) = ∅}) + η/2 (B.43)

for all n ≥ N , where the last inequality follows from the first claim of the lemma shown above. By (A.18)-

(A.19) and (A.21)-(A.22), one may write

(V −δn (θ))o ≡ {λ ∈ ρnBd : vj,n,θ(λ) < −δ, j = 1, · · · , J} (B.44)

Un(θ) ≡
{
λ ∈ ρBd : uj,n,θ(λ) ≤ 0, j = 1, · · · , J

}
. (B.45)

Define the event

An(θ, P ) ≡ {(V −δn (θ))o ⊂ Un(θ)}. (B.46)

Then, by Lemma B.6, for any η > 0 there exists a N ′ ∈ N such that

inf
P∈P

inf
θ∈Υ(P )

P (An(θ, P )) ≥ 1− η/2, ∀n ≥ N ′. (B.47)

Note further that {(V −δn (θ))o 6= ∅} ∩ {Un(θ) = ∅} ∩An(θ, P ) = ∅ by the definition of An(θ, P ). Hence,

sup
P∈P

sup
θ∈Υ(P )

P ({(V −δn (θ))o 6= ∅} ∩ {Un(θ) = ∅})

≤ sup
P∈P

sup
θ∈Υ(P )

{P ({V −δn (θ))o 6= ∅} ∩ {Un(θ) = ∅} ∩An(θ, P )) + P (An(θ, P )c)} ≤ η/2, ∀n ≥ N ′, (B.48)

where the last inequality follows from (B.47). The second claim of the lemma the follows from (B.43) and

(B.48).

Proof of Lemma B.5: For each θ, let

ζn(θ) ≡ sup
λ∈ρBd∩

√
n(Θ−θ)

| max
j=1,··· ,J

{uj,n,θ(λ)} − max
j=1,··· ,J

{vj,n,θ(λ)}|. (B.49)
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By Lemma B.6, for any ε, η > 0, there exists N ′ ∈ N such that

sup
P∈P

sup
θ∈Υ(P )

P (ζn(θ) ≥ ε) < η, ∀n ≥ N ′. (B.50)

Next, suppose that for some δ > 0, (W−δn (θ))o 6= ∅ so that (Vn(θ))o 6= ∅. Then, we have

Vn(θ) = cl((Vn(θ))o)

= cl({λ ∈ ρBod : GP,j,n(θ) +DP,j(θ)
′λ+ hP,j,n(θ) < c(θ), j = 1, . . . , J}), (B.51)

since Vn(θ) and (Vn(θ))o are polyhedral sets.

Define the function

φn(ε) = |s(p, (Vn(θ))− s(p, {λ ∈ ρBd : vj,n,θ(λ) ≤ ε‖DP,j(θ)‖, j = 1, . . . , J})|. (B.52)

For the moment, suppose that {λ ∈ ρBd : vj,n,θ(λ) ≤ ε‖DP,j(θ)‖, j = 1, . . . , J} 6= ∅. By Lemma C.1 (whose

assumptions are verified in Appendix C.1 and C.2) and Theorem C.2, uniformly in P ∈ P with probability at

least 1− η/2, there exists a Mη/2 and N ∈ N such that for all n ≥ N ,

φn(ε) ≤ (J + 2d)Mη/2|ε|. (B.53)

Arguing similarly to the proof of Theorem 2.1 in Molchanov (1998), we have that

Un(θ) ∩ ρBd ⊆

{
λ ∈ ρBd : vj,n,θ(λ) ≤ ζn(θ)

‖DP,j(θ)‖
M

, j = 1, · · · , J

}
, (B.54)

because for each j = 1, · · · , J , {uj,n,θ(λ)} ≤ 0 implies vj,n,θ(λ) − ζn(θ)‖DP,j(θ)‖/M ≤ 0 by Assumption

3.3-(i), and therefore

s(p, Un(θ)) ≤ s(p, Vn(θ)) + φn(ζn(θ)/M). (B.55)

If for some δ > 0, (V −δn (θ))o is non-empty, we have that for n sufficiently large, {λ ∈ ρBd : vj,n,θ(λ) ≤
−ζn(θ)‖DP,j(θ)‖/M, j = 1, · · · , J} is non-empty. Hence,

s(p, Vn(θ)) ≤ s(p, {λ ∈ ρBd : vj,n,θ(λ) ≤ −ζn(θ)‖DP,j(θ)‖/M, j = 1, · · · , J}) + φn(ζn(θ)/M)

≤ s(p, Un(θ)) + φn(ζn(θ)/M), (B.56)

where the first inequality follows from the definition of φn, and the second inequality follows from the definition

of ζn, because for each j = 1, . . . , J , vj,n,θ(λ) + ζn(θ)/M ≤ 0 implies uj,n,θ(λ) ≤ 0. Hence, we have that

uniformly in P ∈ P with probability at least 1− η/2, there exists a Mη/2 and N ∈ N such that for all n ≥ N ,

|s(p, Vn(θ))− s(p, Un(θ))| ≤ φn(ζn(θ)/M) ≤
(J + 2d)Mη/2

M
ζn(θ). (B.57)

Finally, for any ε > 0, there exists N1 ∈ N such that N1 ≥ N that does not depend on P ∈ P or θ ∈ Υ(P )

such that

P ∗
(
{|s(p, Un(θ))− s(p, Vn(θ))| > ε} ∩ {Wn(θ) 6= ∅ ∩ Vn(θ) 6= ∅ ∩ Un(θ) 6= ∅}

)
≤ P ∗

(
{|s(p, Un(θ))− s(p, Vn(θ))| > ε} (B.58)

∩ {Wn(θ) 6= ∅ ∩ Vn(θ) 6= ∅ ∩ Un(θ) 6= ∅} ∩ {(V −δn (θ))o 6= ∅}
)

+ P ∗({Wn(θ) 6= ∅} ∩ {(V −δn (θ))o = ∅}) ≤ η, ∀n ≥ N. (B.59)

where the last inequality follows from (B.50), (B.57), and Lemma B.3. This establishes the claim of the

lemma.
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Proof of Lemma B.6: The function uj,n,θ(λ) can be written as

uj,n,θ(λ) =
√
n

(m̄j(Xi, θ + λ/
√
n)− EP [mj(Xi, θ + λ/

√
n)])

σ̂j(θ + λ/
√
n)

+
√
n
EP [mj(Xi, θ + λ/

√
n)]

σ̂j(θ + λ/
√
n)

− cn(θ + λ/
√
n)

= {GP,j,n(θ + λ/
√
n) +DP,j(θ̄)

′λ+ hP,j,n(θ)}(1 + ηj,n(θ + λ/
√
n))− cn(θ + λ/

√
n), (B.60)

where ηj,n(θ) ≡ σP,j(θ)/σ̂j(θ)−1. The second equality follows from the mean value theorem, and θ̄ represents

a mean value between θ and θ + λ/
√
n, which can differ across components of the gradient.

Let (Pan , θan) ∈ {(P, θ) : P ∈ P, θ ∈ Υ(P )} be a subsequence of distributions such that

lim
n
P ∗an( sup

λ∈ρanBd∩
√
an(Θ−θan )

| max
j=1,··· ,J

uj,an,θan (λ)− max
j=1,··· ,J

vj,n,θan (λ)| ≥ ε)

= lim sup
n→∞

sup
P∈P

sup
θ∈Υ(P )

P ∗( sup
λ∈ρBd∩

√
n(Θ−θ)

| max
j=1,··· ,J

uj,n,θ(λ)− max
j=1,··· ,J

vj,n,θ(λ)| ≥ ε). (B.61)

By passing to a further subsequence {mn}, for each j, we have either (i) κ−1
mnhP,j,mn(θmn) → πj ∈ (−∞, 0]

or (ii) κ−1
mnhP,j,mn(θmn) → πj = −∞. Define J ∗ ≡ {j = 1, · · · , J : πj ∈ (−∞, 0]}. By Lemma B.11, J ∗ is

non-empty.

Define the event

An ≡ {max
j∈J∗

uj,n,θn(λ) = max
j=1,··· ,J

uj,n,θn(λ), and max
j∈J ∗

vj,n,θn(λ) = max
j=1,··· ,J

vj,n,θn(λ), ∀λ ∈ ρBd ∩
√
n(Θ− θn)}.

(B.62)

One may then write

lim
n→∞

P ∗mn( sup
λ∈ρBd∩

√
mn(Θ−θmn )

| max
j=1,··· ,J

uj,mn,θmn (λ)− max
j=1,··· ,J

vj,n,θmn (λ)| ≥ ε)

≤ lim
n→∞

P ∗mn( sup
λ∈ρBd∩

√
mn(Θ−θmn )

| max
j∈J ∗

uj,mn,θmn (λ)− max
j∈J ∗

vj,n,θmn (λ)| ≥ ε) + P ∗mn(Acmn). (B.63)

Note that uj,n,θn(λ) can be written as in (B.60), and vj,n,θ(λ) ≡ GP,j,n(θ) +∇θDP,j(θ)′λ+ hP,j,n(θ)− cn(θ).

Hence, uj,n,θn(λ) = OP(1) + O(1) + O(hP,j,n) and vj,n,θn(λ) = OP(1) + O(1) + O(hP,j,n) uniformly in

λ ∈ ρBd ∩
√
n(Θ− θn), where we used that cn(θ) ≤M . However, hP,j,n → −∞ for all j /∈ J ∗ at a rate faster

than κn, which in turn implies Pmn(Acmn)→ 0. Therefore, for the conclusion of the lemma, it suffices to show

limn→∞ P
∗
mn(supλ∈ρBd∩

√
mn(Θ−θmn ) |maxj∈J ∗ uj,mn,θmn (λ)−maxj∈J ∗ vj,mn,θmn (λ)| ≥ ε) = 0.

For each λ ∈ Rd, define rj,n,θ(λ) ≡ uj,n,θ(λ)− vj,n,θ(λ). By the triangle and Cauchy-Schwarz inequalities,

for any θ ∈ Θ and λ ∈ ρBd ∩
√
n(Θ− θ), we have

|rj,n,θ(λ)| ≤ |GP,j,n(θ + λ/
√
n)−GP,j,n(θ)|+ ‖DP,j(θ̄)−DP,j(θ)‖‖λ‖+ |cn(θ + λ/

√
n)− cn(θ)|

+ |GP,j,n(θ + λ/
√
n) +DP,j(θ̄)

′λ+ hP,j,n(θ)|ηj,n(θ + λ/
√
n)

≤ |GP,j,n(θ + λ/
√
n)−GP,j,n(θ)|+ oP(1) + oP(1) + {OP(1) +O(1) + |hP,j,n(θ)|})OP(n−1/2), (B.64)

where the last inequality follows from ‖DP,j(θ̄) − DP,j(θ)]‖ = oP(1) by the Lipschitz continuity of DP,j

(Assumption 3.3-(ii)) and θ̄ being a mean value between θ and θ + λ/
√
n, ‖λ‖ ≤ ρ, the equicontinuity

assumption on cn, ‖DP,j(θ)‖ being uniformly bounded (Assumption 3.3-(i)), and supθ∈Θ |ηj,n(θ)| = OP(n−1/2)

by Assumption 3.3-(iii).

By (B.64), the uniform stochastic equicontinuity of {GP,j,n} (Assumption 3.4), we have

sup
λ∈ρBd∩

√
mn(Θ−θmn )

| max
j∈J ∗

uj,mn,θmn (λ)− max
j∈J ∗

vj,n,θmn (λ)|

≤ sup
λ∈ρBd∩

√
mn(Θ−θmn )

max
j∈J ∗

|rj,n,θmn (λ)| = oP(1) + max
j∈J ∗

|hPmn ,j,mn(θmn)|OP(n−1/2) = oP(1), (B.65)

where the last equality follows from hPmn ,j,mn(θmn) = O(κn) for all j ∈ J ∗ and κn/n
1/2 → 0. The conclusion

of the lemma then follows from (B.61), (B.63), and (B.65).
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Proof of Lemma B.7:

Recall that cn(θ) is defined as the smallest c such that Pr(ZG
n (p, c, θ) ≥ 0 ≥ −ZG

n (−p, c, θ)) ≥ 1 − α.

Observe that cn(θ) is lower bounded by the smallest c such that Pr(ZG
n (p, c, θ) ≥ 0) ≥ 1− α, where

ZG
n (p, c, θ) = sup

{
p′λ : DP,j(θ)

′λ+ ζ̃n,j(θ) ≤ c−GP,j(θ), j = 1, ..., J
}
. (B.66)

We work with this one-sided c below. With abuse of notation, we denote this one sided c by cn(θ).

Here, {GP,j(θ), j = 1, · · · , J} jointly follows N(0,ΩP (θ)). Note that cn depends on P through ΩP , DP ,

and ζ̃n,j(θ) ≡ ϕ∗(κ−1
n

√
nEP (mj(θ))/σP,j(θ)). To show its dependence on P , we write it as cn,P (θ) below. Let

c̃ ≡ lim inf
n→∞

inf
P∈P

inf
θ∈Υ(P )

cn,P (θ). (B.67)

In what follows, let {an} be a subsequence of {n} such that

lim
an→∞

can,Pan (θan) = c̃. (B.68)

This subsequence exists because cn(θ) ≤M . Let {ln} be a further subsequence such that for some (Ω, D, h, ζ̃) ∈
RJ×J × Rd×J × (R− ∪ {−∞})J × (R− ∪ {−∞})J ,

ΩPln (θln)→ Ω, DPln (θln)→ D, hln(θln)→ h, and ζ̃ln(θln)→ ζ̃. (B.69)

Define

ZW(p, c) ≡ sup
{
p′λ ∈ ρBd : D′jλ+ ζ̃j ≤ c−Wj , j = 1, ..., J

}
, (B.70)

where Wj , j = 1, · · · , J jointly follow N(0,Ω).

We proceed below by taking the following steps.

Step 1: The claim of this step is that min{c ≥ 0 : Pr(ZW(p, c) ≥ 0) ≥ 1− α} ≤ c̃.
For each n, let Wln ∼ N(0,ΩPln (θln)). Then, one may write

ZG
ln(p, c, θln)

d
= ZWln

ln
(p, c, θln) ≡ sup

{
p′λ ∈ ρBd : DPln ,j(θln)′λ+ ζ̃ln,j(θln) ≤ c−Wln , j = 1, ..., J

}
.

(B.71)

By (B.69), the characteristic function of Wln converges pointwise to that of W. By Lévy’s continuity theorem,

it then follows that Wln
d→W. Take Skorokhod representations W∗ln ,W

∗ of Wln and W such that W∗ln
a.s.→ W∗.

Let cln be an arbitrary sequence such that cln → c∗. Then, by (B.69) and Lemma C.1 (whose assumptions

are verified in Appendix C.1 and C.2), it follows that Z
W∗ln
ln

(p, cln , θln)
a.s.→ ZW∗(p, c∗). This and (B.71) in turn

imply that

ZG
ln(p, cln , θln)

d→ ZW(p, c∗). (B.72)

Therefore, we have

lim sup
ln→∞

Pr(ZG
ln(p, cln , θln) ≥ 0) ≤ Pr(ZW(p, c∗) ≥ 0). (B.73)

Now take cln = cln,Pln (θln) in (B.73). Then, by (B.68) and (B.73), we have

1− α ≤ Pr(ZW(p, c̃) ≥ 0). (B.74)

Hence, min{c ≥ 0 : Pr(ZW(p, c) ≥ 0) ≥ 1− α} ≤ c̃.

Step 2: The claim of this step is that there exists c > 0 such that min{c ≥ 0 : Pr(ZW(p, c) ≥ 0) ≥ 1− α} ≥ c.
We further divide the argument in cases. Let K be the (J + 2d)× d matrix collecting in the first J rows the

matrix D, and below it the matrices Id and −Id. We liberally use the fact that dropping constraints estimates

ZW(p, c) from above and therefore cW = min{c ≥ 0 : P (ZW(p, c) ≥ 0) ≥ 1− α} from below.

Case 1: θln ∈ H(p,ΘI(Pln)).
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Because θln ∈ H(p,ΘI(Pln)) for all n, there exists a sequence of non-empty sets J (θln) ⊆ {1, · · · , J} such

that J (θln) ≡
{
j ∈ {1, · · · , J1 + 2J2} : ζ̃ln,j(θln) = 0}. Note that J (θln) is a subset of a finite set for all n.

Hence, there is a further subsequence {kn} of {ln} and J ∗ ⊂ {1, · · · , J} such that J (θkn) = J ∗ for all n.

Hence, ζ̃kn,j(θkn) = 0 for all n and j ∈ J ∗. Then, by (B.69), it follows that ζ̃j = 0 for all j ∈ J ∗.
Let Λ(K∗, g∗W, c) denote the constraint set of the problem defining ZW(p, c) corresponding to j ∈ J ∗,

with g∗Wj = −Wj − ζ̃j for j ∈ J ∗ ∩ {1, . . . , J}, and g∗Wj = ρ for j ∈ J ∗ ∩ {J + 1, . . . , J + 2d}, with Λ(·, ·, ·)
is defined in equation A.9. For any equality, at most one of the corresponding inequalities constrains the

value of maxλ∈Λ(K∗,0,0) p
′λ. Remove one inequality that does not constrain this value. Observe that after this

simplification, Λ(K∗, 0, 0) cannot lose dimensionality due to containing equalities but only due to inequalities

intersecting on a subspace.

Suppose first that Λ(K∗, 0, 0) has a non-empty interior.

Consider the cone {λ : Djλ ≤ 0, j ∈ J ∗}, which is a superset of Λ(K∗, 0, 0). By the lower bound

on gradients, λ = 0 solves maxλ∈Λ(K∗,0,0) p
′λ. This requires that a Karush-Kuhn-Tucker (KKT) condition

applies at λ = 0. Define a set J ⊆ J ∗ such that

p =
∑
j∈J

D′jµj , and µj > 0, ∀j ∈ J , (B.75)

and no strict subset of J satisfies (B.75). By the definition of J , {Dj , j ∈ J } are linearly independent.

Consider first the following special case: ζ̃j = 0 for all j in J and ζ̃j = −∞ otherwise. Let DJ be a

#J × d matrix that stacks {D′j , j ∈ J }. Similarly, let ΩJ be the correlation matrix of {Wj , j ∈ J }. In this

special case, one may then write

ZW(p, c) = sup
{
p′λ : D′jλ ≤ c−Wj , j ∈ J

}
, (B.76)

By KKT, the optimal value in (B.76) is bounded, and the problem above is solved (not necessarily uniquely)

by λ∗(c) = D′J (DJD
′
J )−1(c ·1J −WJ ), where 1J is a #J ×1 vector of ones. Thus, by (B.75), the problem’s

optimal value is given by ZW(p, c) = µ′J (c · 1J −WJ ), where µJ is a #J × 1 vector that stacks µj , j ∈ J .
This object is distributed as N(cµ′J 1J , µ

′
JΩJµJ ). Hence, letting ρ ≡ µJ / ||µJ ||, we have

min{c ≥ 0 : Pr(ZW(p, c) ≥ 0) ≥ 1− α}

= Φ−1(1− α)×
√
µJΩJµ′J /

(
µ′J 1

)
= Φ−1(1− α)×

√
ρΩJ ρ′/

(
ρ′1
)
≥ Φ−1(1− α)× λmin(ΩJ )1/2/d.

(B.77)

By Assumption 3.2 (iv), there exists a constant ε > 0 that does not depend on θ such that the smallest

eigenvalue of ΩP (θ) is bounded from below by ε for all θ and P ∈ P. Define c ≡ Φ−1(1− α)× ε1/2/d. Then,

the conclusion of this step follows for the special case.

In general, ZW is given by

ZW(p, c) = sup
{
p′λ :D′jλ ≤ c−Wj , j ∈ J ,

D′jλ+ ζ̃j ≤ c−Wj , j /∈ J
}
, (B.78)

where ζ̃j ∈ R− ∪ {−∞} for j /∈ J . Note that adding the constraints with j /∈ J weakly decreases ZW(p, c)

and therefore weakly increases min{c ≥ 0 : Pr(ZW(p, c) ≥ 0) ≥ 1 − α}. Hence, c is also a valid lower bound

for the general case.

By (B.67) and Steps 1-2, it then follows that

lim inf
n→∞

inf
P∈P

inf
θ∈H(p,ΘI (P ))

cn,P (θ) ≥ c > 0. (B.79)

Suppose now that Λ(K∗, 0, 0) has no interior, i.e. is lower dimensional.
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Remove constraints until left with an irreducible set C̃ containing d̃ ≤ d constraints s.t.
{
DC̃λ ≤ 0

}
has

dimension strictly less than d̃. (Irreducibility means that for any index set C∗ ⊂ C̃, the cone
{
DC∗λ ≤ 0

}
is of dimension d̃.) Without loss of generality set C̃ = {1, ..., d̃}. For

{
D[1:d̃]λ ≤ 0

}
to be lower dimensional,

the hyperplane
{
D[d̃]λ = 0

}
must separate the halfspace

{
D[d̃]λ ≤ 0

}
from the cone

{
D[1:d̃−1]λ ≤ 0

}
. Hence,

any element of
{
D[1:d̃−1]λ = 0

}
minimizes D[d̃]λ subject to D[1:d̃−1]λ ≤ 0. As this minimum is attained, it is

characterized by a KKT condition, thus D[d̃] = µ′
(
−D[1:d̃−1]

)
= −µ′D[1:d̃−1] for some LM vector µ ∈ Rd̃−1

+ .

If there existed such a µ with one or more zero components, then the corresponding constraints could be

dropped without changing the solution to the program and hence the intersection of halfspaces, contradicting

irreducibility. Hence, no µ can have zero elements, but that means that µ is unique and that D[1:d̃−1] has

full row rank. This, in turn, means that for any g,
{
D[1:d̃−1]λ = g[1:d̃−1]

}
is nonempty and (by sufficiency of

KKT in linear programs) any element of it minimizes D[d̃]λ subject to D[1:d̃−1]λ ≤ g[1:d̃−1]. This, in turn,

means that
{
D[1:d̃]λ ≤ g[1:d̃]

}
6= ∅ iff D[d̃]λ∗ ≤ g[d̃], where λ∗ = D[1:d̃−1]′

(
D[1:d̃−1]D[1:d̃−1]′

)−1

g[1:d̃−1]. This

condition can be written as

D[d̃]D[1:d̃−1]′
(
D[1:d̃−1]D[1:d̃−1]′

)−1

g[1:d̃−1] − g[d̃] ≤ 0

−µ′g[1:d̃−1] − g[d̃] ≤ 0⇐⇒

⇐⇒
[
−µ′, −1, 0

[1×(J∗−d̃)]

]
g ≤ 0,

where we substituted for D[d̃] = −µD[1:d̃−1] and simplified. This condition is linear in g and just fulfilled

at g = 0, thus its probability under the multivariate normal distribution of g is exactly 1/2. But then,

Pr(ZW(p, 0) ≥ 0) ≤ Pr(Λ(K∗, g∗W, 0) 6= ∅) ≤ 1/2.

Next, consider Λ(K∗, g∗W, c) for some c ≥ 0. The arguments involving Lagrange multipliers are unchanged,

and so a necessary condition for Λ(K∗, g∗W, c) to be nonempty is that

−µ′
(
g∗W[1:d̃−1] + c · 1d̃−1

)
≤ g∗W[d̃] + c

⇐⇒ c ≥ − [µ′, 1]g∗W[1:d̃]

[µ′, 1]1d̃
,

thus we can write

Pr(ZW(p, c) ≥ 0) ≤ Pr(Λ(K∗, g∗W, c) 6= ∅) ≤ Pr

(
c ≥ − [µ′, 1]g∗W[1:d̃]

[µ′, 1]1d̃

)
= Pr

(
[µ′, 1]g∗W[1:d̃]

[µ′, 1]1d̃
≤ c

)
.

where the last step used that [µ′, 1]g∗W[1:d̃] is distributed symmetrically about zero. The r.h. probability is the

c.d.f. of a normal r.v. centered at 0, so we immediately have cW ≥ 0 for α = 1/2 and cW > 0 for α < 1/2. The

relevant case for bounding the c.d.f. is, therefore, c ≥ 0, in which case the c.d.f. is maximized by minimizing

the r.v.’s variance. Write

[µ′, 1]g∗W[1:d̃]

[µ′, 1]1d̃
=

[µ′,1]
‖[µ′,1]‖g

∗W[1:d̃]

[µ′,1]
‖[µ′,1]‖1d̃

.

The numerator is distributed N(0, ς2), where ς2 ≥ ω by Assumption 3.2-(v). Also,
∥∥∥ [µ′,1]
‖[µ′,1]‖1d̃

∥∥∥ ≤ 1 ·
∥∥1d̃
∥∥ =√

d̃ ≤
√
d. Using these bounds to bound the variance from below, one gets

c ≥ ω1/2d−1/2Φ−1(1− α).

This establishes the claim of the lemma for this case.

Case 2: θln /∈ H(p,ΘI(Pln)) and there exists a direction (=vector of unit length) r s.t. Dj(θln)r ≤ −ln−1/4

for all j ∈ J ∗.
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Let T = {λ/ ‖λ‖ : λ ∈ Λ(K∗, 0, 0)} collect first-order feasible directions in Λ(K∗, 0, 0). Fix q ∈ T . For any

j = 1, . . . J and scalar α > 0, the mean value theorem implies

EP (mj(θln + αq))

σP,j(θln + αq)
=
EP (mj(θln))

σP,j(θln)
+ αDj(θ̄ln)q

for some θ̄ln that is componentwise between θln and θln + αq.

If j /∈ J ∗, then EP (mj(θln))/σP,j(θln) < −κln ln−1/2 and therefore

EP (mj(θln + αq))

σP,j(θln + αq)
≤ −κln ln

−1/2 + αDj( ¯θln)q ≤ −κln ln
−1/2 + αM̄,

where we used Assumption 3.3-(i). This quantity is nonpositive for α ≤ κln ln−1/2M̄−1.

For any j ∈ J ∗, q ∈ T implies Dj(θln)q ≤ 0 and therefore

EP (mj(θln + αq))

σP,j(θln + αq)
≤=

EP (mj(θln))

σP,j(θln)︸ ︷︷ ︸
≤0

+ αDj(θln)q︸ ︷︷ ︸
≤0

+ α
(
Dj(θ̄ln)−Dj(θln)

)
q ≤Mα2

using that ‖q‖ = 1 and that Dj(θ) is Lipschitz continuous with Lipschitz constant M by Assumption 3.3-(i).

Next, the mean value theorem yields

EP (mj(θln + αq + βr))

σP,j(θln + αq + βr)
=
EP (mj(θ + αq))

σP,j(θln + αq)
+ βDj(θ̄ln)r,

where θ̄ln lies componentwise between θln + αq and θln + αq + βr. Hence,

EP (mj(θln + αq + βr))

σP,j(θln + αq + βr)
≤ Mα2 + βDj(θln)r + β

(
Dj(θ̄ln)−Dj(θln)

)
r

≤ Mα2 − ln1/4β + β(β + α)M.

Let α = κln ln
−1/2M̄−1 and β = 3κ2

ln ln
−3/4MM̄−2. For ln large enough (namely lnκ

−4
ln
≥ 81M4, a threshold

that does not depend on moving parameters) this implies β ≤ α and therefore

EP (mj(θln + αq + βr))

σP,j(θln + αq + βr)
≤ 3Mα2 − ln−1/4β

= 3M
(
κln ln

−1/2M̄−1
)2

− ln−1/43κ2
ln ln

−3/4MM̄−2 = 0.

We conclude that for ln large enough, q ∈ T implies θln + κln ln
−1/2M̄−1q ∈ ΘI(P ). Thus, if p′q = O(κ

−3/4
ln

),

then one can write

s(p,ΘI(P ))− s(−p,ΘI(P )) ≥ p′
(
θln + κln ln

−1/2M̄−1q
)
− p′θln = κln ln

−1/2M̄−1p′q = O(κ
1/4
ln
n−1/2)

so that the projection is long, thereby violating the assumptions of the Lemma. This obviously extends to

larger p′q.

Next, if max{p′q : q ∈ T} = o(κ
−3/4
ln

), then the bound from case 1 applies asymptotically. To see this, let

r denote the angle of the simple rotation R that rotates p into p̂, the projection of p subject to unit length into

the normal cone corresponding to the tangent cone T , denoted N . Then p̂ is on ∂N and T therefore contains

a direction q̂⊥p̂. By our current assumption we then have p′q̂ = o(κ
−3/4
ln

), hence sin r = 1 − p′p̂ = o(κ
−3/4
ln

),

hence cos r = 1− o(κ−3/4
ln

).

Now fix any Λ(K∗, g∗W, c). We show that maxλ∈Λ(K∗,g∗W,c) p
′λ = maxλ∈Λ(K∗,g∗W,c) p̂

′λ + o(κ
−3/4
ln

). Be-

cause case 1 would apply if the direction of projection were p̂, it then applies asymptotically to p. Initially

assume Θ ⊂ R2, fix any λ ∈ Λ(K∗, g∗W, c) and write

p̂′λ = (Rp)′ λ = p′
[

cos r sin r

− sin r cos r

]
λ = p′

(
I2 + o(κ

−3/4
ln

)
)
λ = p′λ+ o(κ

−3/4
ln

).

This concludes the proof because the difference of maxima is bounded above by the maximum of differences.
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For higher-dimensional parameter spaces, assume w.l.o.g. (because it can always be ensured by orthonormal

base change) that p = (1, 0, ..., 0) and that R =

 cos r sin r 0

− sin r cos r 0

0 0 Id−2

, so that the above algebra goes

through with minimal modification.

Case 3: θln /∈ H(p,ΘI(Pln)) and for any direction (vector of unit length) r one has Dj(θln)r > −ln−1/4

for some j ∈ J ∗.
Let y = inf {x : Λ(K∗, 0, x) 6= ∅}, then Λ(K∗, 0, y) is nonempty but has no interior. For any λ ∈

Λ(K∗, 0, 0), there exists j ∈ J ∗ s.t. Djλ/ ‖λ‖ > −ln−1/4, implying that Djλ > −‖λ‖ ln−1/4 ≥ −ρ
√
dln
−1/4.

It follows that Λ(K∗, 0,−ρ
√
dln
−1/4) = ∅ and therefore that y > −ρ

√
dln
−1/4. Next,

Λ(K∗, g∗W, c− ρ
√
dln
−1/4) = Λ(K∗, g∗W − ρ

√
dln
−1/41J∗ , c).

Assumption 3.2-(v) ensures that

Pr
(

Λ(K∗, g∗W, c) 6= ∅,Λ(K∗, g∗W − ρ
√
dln
−1/41J∗ , c) = ∅

)
→ 0

and therefore the bound from case 1 applies.

Proof of Lemma B.8: By definition, ζ̂n,j ≡ ϕ(κ−1
n

√
nm̄j,n(θ))/σ̂n,j(θ)), and therefore ζ̂∗n,j(θ) ≤ ζ̂n,j(θ) for

each n and θ. This implies that the constraint set in (A.8) used to define Zb∗,ρn (p, c, θ) in (A.13) is tighter

than the constraint set used to define (A.8) in (A.12), and therefore Zb∗,ρn (p, c, θ) ≥ Zb,ρn (p, c, θ), which in turn

yields ĉn(θ) ≥ ĉ∗n(θ) for each n and θ.

Proof of Lemma B.9: Let (θn, Pγn) ∈ {(θ, P ), P ∈ P, θ ∈ Υ(P )} be a sequence such that

lim sup
n→∞

Pγn (|ĉ∗n(θn)− cn(θn)| > ε) = lim sup
n→∞

sup
P∈P

sup
θ∈Υ(P )

P (|ĉ∗n(θ)− cn(θ)| > ε) . (B.80)

Let {an} be a subsequence of {n} such that

lim
n→∞

Pγan (|ĉ∗an(θan)− can(θan)| > ε) = lim sup
n→∞

Pγn (|ĉ∗n(θn)− cn(θn)| > ε) . (B.81)

Observe that by (A.11)-(A.12), ZG,ρ
n (p, c, θ) and Zb∗,ρn (p, c, θ) differ only in the constraint set, with the boot-

strap process and the estimated gradient replaced by their limits, and ζ̂∗n(θ) replaced by ζ̃P,n(θ). Below, we

argue that the convergence of the bootstrap process, the estimated gradient, and the smooth GMS term imply

the desired result.

By passing to a further subsequence {ln} of {an}, one may assume

κ−1
ln
hPγln ,ln,j

(θln)→ πj ∈ [−∞, 0], j = 1, · · · , J, (B.82)

and therefore by continuity of ϕ∗, ζ̃P,n,j(θ) → ϕ∗(πj) for j = 1, · · · , J . Define J ∗ ≡ {j = 1, · · · , J : πj ∈
(−∞, 0]}. Note that J ∗ is non-empty by Lemma B.11. Because

√
n(m̄b

n,j(θn)−EP [mj(Xi, θn)]) = OP(1) and

ϕ∗ is continuous, it follows that for any j ∈ J ∗,

ζ̂∗n,j(θln) = ϕ∗
(
κ−1
ln

√
lnm̄

b
ln,j(θln)

σ̂ln,j(θln)

)

= ϕ∗
(
κ−1
ln

√
ln(m̄ln,j − EPγln [mj(Xi, θln)]

σ̂ln,j(θln)
+ κ−1

ln
hPγln ,ln,j

(θln)
σPγln ,j

(θln)

σ̂ln,j(θln)

)
= ζ̃Pγln ,ln,j

(θln) + oP(1).

(B.83)
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Define the event

Aln ≡ {Z
G,ρ
ln

(p, c, θln) = U(GJ
∗

Pln
(θln), DJ

∗

Pln
(θln), ζ̃J

∗

Pln ,ln
(θln), c, ρ),

and Zb,ρln (p, c, θln) = U(Gb,J
∗

Pln
(θln), D̂J

∗

Pln
(θln), ζ̂∗,J

∗

ln
(θln), c, ρ)}. (B.84)

Arguing as in (B.62), one can show Pγln (Aln)→ 1.

By Lemma D.2.8 in Bugni, Canay, and Shi (2015), Gbn
d→ GP in l∞(Θ) uniformly in P conditional on

{X1, · · · , Xn}. In what follows, we take (Gb∗n ,G∗P ) to be the almost sure representation of (Gbn,GP ) such that

Gb
∗
n ’s distribution equals the distribution of Gbn conditional on {X1, · · · , Xn}, G∗P

d
= GP , and Gb

∗ a.s.→ G∗P .

Below, we assume that Zb∗,ρn and ZG∗,ρ
n are defined for (Gb∗n ,G∗P ). Then, for any ε > 0,

Pγln (Zb∗ln (p, c, θln) ≥ −ε ∩ Zb∗ln (−p, c, θln) ≥ −ε ∩Aln)

≥ Pγnun
(
ZG,ρ
ln

(p, c, θln) ≥ 0 ≥ −ZG,ρ
ln

(p, c, θln) ∩Aln
)

− Pγln
(

max
q∈p,−p

|Zb∗,ρln
(q, c, θln)−ZG,ρ

n (q, c, θln)| ≥ ε ∩Aln
)

≥ Pγln
(
ZG,ρ
ln

(p, c, θln) ≥ 0 ≥ −ZG,ρ
ln

(−p, c, θln) ∩Aln
)
− ε (B.85)

for all n sufficiently large, where the second inequality follows from Gb
∗ a.s.→ G∗P , D̂n

p→ DP uniformly in P

by Assumption 3.3 (iii), (B.83), and Lemma C.1 (whose assumptions are verified in Appendix C.1 and C.2).

Noting that Pγln (Aln)→ 1, it then follows that for any ε > 0

Pγln

(
Zb∗,ρln

(p, c, θln) ≥ 0 ≥ −Zb∗,ρln
(−p, c, θln)

)
≥ Pγln

(
ZG,ρ
ln

(p, c, θln) ≥ 0 ≥ −ZG,ρ
ln

(−p, c, θln)
)
− ε , (B.86)

for all n sufficiently large. Similarly, reversing the roles of Zb∗,ρn (p, c, θln) and ZG,ρ
ln

(p, c, θln), we obtain

lim
n→∞

∣∣∣Pγln(Zb∗,ρln
(p, c, θln) ≥ 0 ≥ −Zb∗,ρln

(−p, c, θln)
)
− Pγln

(
ZG,ρ
ln

(p, c, θln) ≥ 0 ≥ −ZG,ρ
ln

(−p, c, θln)
)∣∣∣ = 0 .

(B.87)

The conclusion of the lemma then follows from (B.80)-(B.81), Gn(x) ≡ Pγln (ZG,ρ
ln

(p, x, θln) ≥ 0 ≥ −ZG,ρ
ln

(−p, x, θln))

being continuous (uniformly in n) and strictly decreasing by Assumption 3.2 (iv) and arguing similarly to

Lemma 1.2.1 in Politis, Romano, and Wolf (1999).

Proof of Lemma B.10: (i) To establish the first result, observe that for given θ the event

max
j=1,...,J

{GP,j(θ)} ≤ c (B.88)

implies the event {
sup
λ∈ρBd

〈p, λ〉 : max
j=1,...,J

{
GP,j(θ) +DP,j(θ)

′λ+ ζ̃P,j,n(θ)
}
≤ c

}
≥ 0. (B.89)

This is so because if maxj=1,...,J {GP,j(θ)} ≤ c, then due to ζ̃P,j,n(θ) ≤ 0, λ = 0 is feasible in the outer

maximization problem in (B.89), hence the value of (B.89) is greater than or equal to 〈p, 0〉 = 0. In turn this

yields the desired result for

M = z1−α/J

≥ sup
P∈P

sup
θ∈Θ

{
inf

{
c : P

(
max

j=1,...,J
{GP,j(θ)} ≤ c

)
≥ 1− α

}}
, (B.90)

where zτ is the τ quantile of the standard normal distribution, and the second line follows from Bonferroni’s

inequality applied to the maximum order statistic.

(ii) The proof is similar to that of Lemma B.9. Let Let (θn, Pγn) ∈ {(θ, P ), P ∈ P, θ ∈ Υ(P )} be a
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sequence such that

lim sup
n→∞

Pγn

(
sup

θ′∈(θn+n−1/2ρnBd)∩Υ(Pγn )

|cn(θn)− cn(θ′)| > ε
)

= lim sup
n→∞

sup
P∈P

sup
θ∈Υ(P )

P
(

sup
θ′∈(θ+n−1/2ρnBd)∩Υ(P )

|cn(θ)− cn(θ′)| > ε
)
. (B.91)

Let {an} be a subsequence of {n} such that

lim
n→∞

Pγan

 sup
θ′∈(θan+a

−1/2
n ρanBd)∩Υ(Pγan

)

|can(θan)− can(θ′)| > ε


= lim sup

n→∞
Pγn

(
sup

θ′∈(θn+n−1/2ρnBd)∩Υ(Pγn )

|cn(θn)− cn(θ′)| > ε
)
. (B.92)

Arguing as in (B.82) and passing to a further subsequence {ln}, one has from Lemma B.11 a non-empty set

of J ∗ ⊆ {1, · · · , J} such that

κ−1
ln
hPγln ,j,ln

(θln)→ πj ∈ (−∞, 0], ∀j ∈ J ∗. (B.93)

This in turn implies that κ−1
ln
hPγln ,j,ln

(θ′)→ πj uniformly in θ′ ∈ (θln + l
−1/2
n ρBd)∩Υ(Pγln ). This is because,

by the mean value theorem, one has

κ−1
ln
hPγln ,j,ln

(θ′) = κ−1
ln
hPγln ,j,ln

(θln) + κ−1
ln
DPln ,j(θ̄ln)′(θ′ − θln), (B.94)

for some mean value θ̄ln between θln and θ′, and κ−1
ln
DPln ,j(θ̄ln)′(θ′ − θln) = o(1) due to Assumption 3.3 (i),

‖θ′ − θln‖ = O(1). Define

Aln ≡ {Z
G,ρ
ln

(p, c, θln) = U(GJ
∗

Pln
(θln), DJ

∗

Pln
(θln), ζ̃J

∗

Pln ,ln
(θln), c, ρ))}. (B.95)

An argument similar to the one in the proof of Lemma B.6 then ensures Pγln (Aln)→ 1. Arguing similarly to

(B.85)-(B.87), one then obtains for any θ′ln ∈ (θln + l
−1/2
n ρBd) ∩Υ(Pγln )

lim
n→∞

∣∣∣Pγln(ZG,ρ
ln

(p, c, θln) ≥ 0 ≥ −ZG,ρ
ln

(−p, c, θln)
)
− Pγln

(
ZG,ρ
ln

(p, c, θ′ln) ≥ 0 ≥ −ZG,ρ
ln

(−p, c, θ′ln)
)∣∣∣ = 0 .

(B.96)

By Assumption 3.2 (iv) one may then show that Gn(x) ≡ Pγln (ZG,ρ
ln

(p, x, θln) ≥ 0 ≥ −ZG,ρ
ln

(−p, x, θln)) is

continuous (uniformly in n) and strictly decreasing. The conclusion of the Lemma then follows from (B.96)

and arguing as in Lemma 1.2.1 in Politis, Romano, and Wolf (1999).

Proof of Lemma B.11: When h∆
n > κ

1/5
n , θn ∈ H(p,ΘI(Pn)) for all n implying there exists a j ∈ {1, · · · , J}

and a sub-sequence such that hP,j,mn(θmn) = 0 for all n.

When h∆
n ≤ κ

1/5
n , θn ∈ ΘI(Pn). For θn ∈ ∂ΘI(Pn), the previous argument applies. Suppose θn ∈ Θo

I ,

which in turn implies that there are no moment equalities. Let θ̃n ≡ θn + αp ∈ ∂ΘI(Pn) denote the closest

point to θn in direction p on the boundary of ΘI(Pn). By a mean value expansion,

E(mj(θn))

σj(θn)
=
E(mj(θ̃n))

σj(θ̃n)
+Dj(θ̄n)(θ̃n − θn),

for θ̄n a value between θn and θ̃n. Because θ̃n ∈ ∂ΘI(Pn), it follows that there exists at least one j ∈ {1, . . . , J}
such that E(mj(θ̃n))/σj(θ̃n) = 0, and therefore for that same j,∣∣∣∣∣E(mj(θn))

σj(θn)

∣∣∣∣∣ ≤ ‖Dj(θ̄n)‖‖θ̃n − θn‖ = O(κ1/5
n n−1/2),

where the last equality follows from the assumption that h∆
n ≤ κ

1/5
n , the fact that Dj is Lipschitz in θ, and

the fact that Dj(θ̃n) is uniformly bounded. It then follows that for this same j, κ−1
n hP,j,n(θ)→ 0, establishing

the claim.
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C Uniform continuity of the linear program value and uniform

bound on Lagrange Multipliers

For each (D, e, ρ) ∈ RJ×d×RJ ×R+, define the value function V (D, e, ρ) of the following linear programming

problem LP (D, e, ρ):

V (D, e, ρ) ≡ sup
λ∈Rd
〈p, λ〉

s.t. Dλ ≤ e, (C.1)

λ ∈ ρBd. (C.2)

Let S(D, e, ρ) and M(D, e, ρ) be the solution set and the set of Lagrange multipliers (solutions to the dual

problem) to LP (D, e, ρ) respectively. Let the Lagrangian be defined by

L(λ,D, e, ρ) ≡ −〈p, λ〉+

J∑
j=1

µj(D
′
jλ− ej) +

d∑
k=1

µJ+k(ι′kλ− ρ) +

d∑
k=1

µJ+d+k(−ρ− ι′kλ), (C.3)

where ιk is a d-dimensional vector whose k-th component is 1 and other components are 0s.

Below, let w ≡ (wD, we) ∈ RJd+J denote a direction of deviation of (D′, e′) from (D, e). For any t ≥ 0 and

w ∈ RJd+J , let Φw(t) ≡ {λ ∈ ρBd : (D+ twD)λ ≤ (e+ twe)} be the feasibility set under a small perturbation

toward w. We verify the key assumptions of Lemma C.1 for the linear programs that we use, in Appendix C.1

and C.2.

Lemma C.1: Let T be the set of (D, e)s that satisfies the following conditions. There exists a positive

constants M > 0 such that (a) Slater’s condition holds; (b) µj ≤M for all j = 1, · · · , J , µ ∈M(D, e, ρ).

Suppose (D, e) ∈ T and (D′, e′) ∈ RJd+J is such that Φw(t) 6= ∅ and (D + twD, e + twe) ∈ T for all t

sufficiently small with w = (D′ −D, e′ − e). Then

|V (D′, e′, ρ)− V (D, e, ρ)| ≤M‖D′ −D‖ρ+M‖e′ − e‖ (C.4)

Proof. We first verify conditions (i)-(iv) of Theorem 4.4 in Bonnans and Shapiro (1998) (BS henceforth). Note

that LP (D, e, ρ) is convex. S(D, e, ρ) is non-empty and compact by (D, e) ∈ T and ρBd being compact. The

directional regularity condition in BS is satisfied because Slater’s condition holds. By the argument in the

proof of Theorem 3.2 in Shapiro (1995), condition (iv) of Theorem 4.4 in BS is satisfied if Slater’s condition

holds and if there exist ᾱ < V (D, e, ρ), t∗ > 0, and a compact set S such that

{λ : 〈p, λ〉 ≥ ᾱ, λ ∈ Φw(t)} ⊂ S , (C.5)

for all t ∈ [0, t∗]. By our assumption on (D′, e′), the above condition is satisfied with S = ρBd and ᾱ =

−d1/2ρ for some t∗ > 0. Hence, by Theorem 4.4 in BS and their subsequent remark, V (D, e, ρ) is Hadamard

directionally differentiable with the directional derivative

V ′(D, e, ρ)[w] = inf
λ∈S(D,e,ρ)

sup
µ∈M(D,e,ρ)

∇(D,e)L(D, e, ρ)′w = inf
λ∈S(D,e,ρ)

sup
µ∈M(D,e,ρ)

J∑
j=1

µj(w
′
Djλ− wej ) . (C.6)

By the Hadamard directional differentiability of V and (D, e) being in a finite dimensional space, it follows
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that for any t0 > 0,

inf
t∈[0,t0]

V ′(D + twD, e+ twe, ρ)[w] ≤ V (D + t0wD, e+ t0we, ρ)− V (D, e, ρ)

≤ sup
t∈[0,t0]

V ′(D + twD, e+ twe, ρ)[w] , (C.7)

(see e.g. Proposition 6 in Demyanov, 2009). Letting wD = D′ −D and we = e′ − e, (C.6) and (C.7) imply

|V (D′, e′, ρ)−V (D, e, ρ)|

≤ sup
t∈[0,1]

∣∣ inf
λ∈S(D+twD,e+twe,ρ)

sup
µ∈M(D+twD,e+twe,ρ)

J∑
j=1

µj(w
′
Djλ− wej )

∣∣
≤M

J∑
j=1

‖wDj‖ sup
λ∈ρBd

‖λ‖+M

J∑
j=1

|wej |

≤M‖wD‖ρ+M‖we‖, (C.8)

where the second inequality follows from S(D + twD, e + twe, ρ) ⊂ ρBd,∀t ∈ [0, 1] and Assumption (b), and

the last inequality used ‖x‖2 ≤ ‖x‖1 for any x ∈ RJ . This establishes the claim of the lemma.

C.1 Slater condition

Let DJ1 be a J1 × d matrix whose rows are transposed gradients D′j for j = 1, · · · , J1. Let DJ2 be similarly

defined. Below we use the matrix norm ‖A‖op ≡ sup‖x‖=1 ‖Ax‖.
Let Q denote the law of g ≡ (g′J1 , g

′
J2)′, a random vector in ∈ RJ1+J2 . Let Q be the set of distributions

under consideration. Let e = (gJ1 − hJ1 + c, gJ2 + c,−gJ2 + c) where hJ1 ≤ 0 and c ≥ 0. Let ρ > 0 be given.

LP (D, e, ρ) is said to satisfy the Slater condition if (i) c = 0 and there exists λ ∈ ρBod such that DJ1λ < eJ1
and DJ2λ = eJ2 or (ii) c > 0 and there exists λ ∈ ρBod such that Dλ < e. Below, we let L be the event that

LP (D, e, ρ) satisfies the Slater condition.

Lemma C.2: For any η > 0, there exists Mη > 0 such that

P
(
L ∩ { sup

µ∈M(D,e,ρ)

‖µ‖ ≤Mη/2} ∩ {S(D, e, ρ) 6= ∅}
)
≥ 1− η (C.9)

uniformly in Q ∈ Q.

Proof. First, we show the result for c = 0. In this setting, LP (D, e, ρ) involves J1 affine inequalities, J2 affine

equalities, and the constraint λ ∈ ρBd. Below, I assume that

sup
µ∈M(D,e,ρ)

‖µ‖ ≤Mη/2, S(D, e, ρ) 6= ∅. (C.10)

By Theorem C.1, this event has at least 1 − η/2 probability under any Q ∈ Q. Take any pair (λ∗, µ) ∈
S(D, e, ρ) ×M(D, e, ρ). Let C(λ∗) ≡ {j = 1, · · · , J1 + J2 + 2d : Kjλ − ej = 0}, J1(λ∗) ≡ {j = 1, · · · , J1 :

D′jλ
∗ = ej}, Jd(λ∗) ≡ {k = 1, · · · , d : λ∗k = ρ}, J−d(λ∗) ≡ {k = 1, · · · , d : −λ∗k = ρ}. Denote the cardinality

of each of these sets by J1(λ∗), Jd(λ
∗), and J−d(λ

∗) respectively. Let 0 < ρ′ < ρ and define the following linear

programming problem:

(D) min
µ∈RJ1+ ×RJ2×R2d

+

− Cη/2
∑

j∈J1(λ∗)

µj −
J2∑
k=1

eJ1+kµJ1+k + ρ′
∑

l∈Jd(λ∗)

µJ1+J2+l + ρ′
∑

l∈J−d(λ∗)

µJ1+J2+d+l

s.t.

J1∑
j=1

µjDj +

J2∑
k=1

µJ1+kDJ1+k +

2d∑
l=1

(µJ1+J2+l − µJ1+J2+d+l)ιl = p

µj = 0,∀j /∈ C(λ∗).
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By Theorem 28.3 in Rockafellar (1970), any µ ∈ M(D, e, ρ) satisfies the KKT condition. Therefore, µ ∈
M(D, e, ρ) is a feasible solution to (D). By Lemma C.4 and (C.10), the optimal value achieved in (D) is also

uniformly bounded (with probability at least 1−η/2). Note that (D) is a dual problem to the following primal

problem:

(P ) sup〈p, λ〉

s.t.D′jλ ≤ −Cη/2, j ∈ J1(λ∗)

D′jλ ≤ 0, j ∈ {1, · · · , J1} \ J1(λ∗)

D′jλ = ej , j = J1 + 1, · · · , J2

λk ≤ ρ′, k ∈ Jd(λ∗)

− λk ≤ ρ′, k ∈ J−d(λ∗)

λk = 0, k /∈ Jd(λ∗) ∪ J−d(λ∗).

Since both (P ) and (D) are LPs and (D) is feasible, the strong duality holds (see e.g. Boyd and Vandenberghe,

2004, p.227). Since (D) is feasible and uniformly bounded, (P ) is feasible, which in turn ensures that there

exists a feasible solution λ̃ to (P ). Consider a convex combination λα ≡ αλ̃ + (1 − α)λ∗ for some α ∈ (0, 1).

Then, for any j ∈ J1(λ∗), Cη/2 + ej > 0 implies

D′jλα = αD′j λ̃+ (1− α)D′jλ
∗ ≤ −αCη/2 + (1− α)ej = ej − α(Cη/2 + ej) < ej . (C.11)

Furthermore, for any j ∈ {1, · · · , J1} \ J1(λ∗), one has

D′jλα = αD′j λ̃+ (1− α)D′jλ
∗ ≤ 0 + (1− α)D′jλ

∗ < (1− α)ej < ej , (C.12)

where the first weak inequality follows from D′j λ̃ ≤ 0 for any j ∈ {1, · · · , J1} \ J1(λ∗) by λ̃ being a feasible

solution to (P ), and the second inequality follows from D′jλ
∗ < ej because of the j-th inequality being slack

at λ∗.

Next, since DJ2 λ̃ = DJ2λ
∗ = eJ2 , it follows that

DJ2λα = αDJ2 λ̃+ (1− α)DJ2λ
∗ = eJ2 . (C.13)

Further, the k-th component of λα satisfies

λα,k = αλ̃k + (1− α)λ∗k ≤ αρ′ + (1− α)ρ < ρ, ∀k ∈ Jd(λ∗) (C.14)

λα,k = αλ̃k + (1− α)λ∗k ≥ −αρ′ − (1− α)ρ > −ρ, ∀k ∈ J−d(λ∗) (C.15)

λα,k = (1− α)λ∗k ∈ (−ρ, ρ), k /∈ Jd(λ∗) ∪ J−d(λ∗) (C.16)

Note that for any j ∈ {1, · · · , J1}, Cη/2 + ej = Cη/2 + gj − hj > 0 holds with probability at least 1− η/2 by

hj ≤ 0 and Lemma C.4. Therefore, (C.11)-(C.16) hold with probability at least 1 − η/2. Combine this with

the probability of (C.10), which is also 1 − η/2. Then, the claim of the lemma follows for the case in which

c = 0.

We now consider the case in which c > 0. The argument is similar to the one used above. A key difference

is that the affine equalities in the previous case are treated as two opposing inequalities in the current case.

Again, take any pair (λ∗, µ) ∈ S(D, e, ρ) ×M(D, e, ρ). Let J2(λ∗) ≡ {k = 1, · · · , J2 : DJ1+k = eJ1+k} and

J−2(λ∗) ≡ {k = 1, · · · , J2 : DJ1+J2+k = eJ1+J2+k} be the set of binding constraints among the inequality
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constraints that are generated from the equality constraints. Define

(D) min
µ∈RJ1+ ×RJ2×R2d

+

− Cη/2
∑

j∈J1(λ∗)

µj − Cη/2
∑

k∈J2(λ∗)

µJ1+k − Cη/2
∑

k∈J−2(λ∗)

µJ1+J2+k

+ ρ′
∑

l∈Jd(λ∗)

µJ1+J2+l + ρ′
∑

l∈J−d(λ∗)

µJ1+J2+d+l

s.t.

J1∑
j=1

µjDj +

J2∑
k=1

µJ1+kDJ1+k +

2d∑
l=1

(µJ1+J2+l − µJ1+J2+d+l)ιl = p

µj = 0, ∀j /∈ C(λ∗).

This is a dual problem to the following primal problem:

(P ) sup〈p, λ〉

s.t.D′jλ ≤ −Cη/2, j ∈ J1(λ∗) ∪ J2(λ∗) ∪ J−2(λ∗)

D′jλ ≤ 0, j ∈ {1, · · · , J} \ (J1(λ∗) ∪ J2(λ∗) ∪ J−2(λ∗))

λk ≤ ρ′, k ∈ Jd(λ∗)

− λk ≤ ρ′, k ∈ J−d(λ∗)

λk = 0, k /∈ Jd(λ∗) ∪ J−d(λ∗).

Arguing as in the previous case, there is a feasible solution λ̃ to (P ). Define λα ≡ αλ̃ + (1 − α)λ∗ for some

α ∈ (0, 1). Then, arguing as in (C.11), one has

D′jλα ≤ ej − α(Cη/2 + ej) < ej , ∀j ∈ J1(λ∗) ∪ J2(λ∗) ∪ J−2(λ∗), (C.17)

provided that Cη/2 + ej > 0. Note that ej ≥ gj for all j = 1, · · · , J1 + J2. Hence, Cη/2 + ej > 0 occurs with

probability at least 1−η by Lemma C.4. Furthermore, arguing as in (C.12), for any j ∈ {1, · · · , J}\ (J1(λ∗)∪
J2(λ∗) ∪ J−2(λ∗)), one has

D′jλα = αD′j λ̃+ (1− α)D′jλ
∗ ≤ 0 + (1− α)D′jλ

∗ < (1− α)ej < ej . (C.18)

In addition, (C.14)-(C.16) hold by the same argument as before. Therefore, (C.14)-(C.18) hold with probability

at least 1 − η/2. Combine this with the probability of (C.10), which is also 1 − η/2. Then, the claim of the

lemma follows for the case in which c > 0.

C.2 Uniform bound on Lagrange Multipliers

Theorem C.1: Suppose Assumptions 3.1, 3.2, 3.3 hold and that Λ(KP , gP , cn) 6= ∅, with this set defined

in equation A.9. Then for any η > 0 there exists a Mη <∞ such that

sup
P∈P

P

(
sup

µ∈M(DP ,eP ,ρ)

‖µ‖ > Mη,Λ(KP , gP , cn) 6= ∅

)
< η. (C.19)

Theorem C.2: Suppose Assumptions 3.1, 3.2, 3.3, 3.4 hold and that Λ(KP , gP , cn) 6= ∅, with this set

defined in equation A.9. Then for any η > 0 there exists a Mη <∞ and N ∈ N such that

sup
P∈P

P

(
sup

µ∈M(Dn,en,ρ)

‖µ‖ > Mη,Λ(Kn, gn, cn) 6= ∅

)
< η, (C.20)

for all n ≥ N .

Theorem C.3: Suppose Assumptions 3.1, 3.2, 3.3, 3.4 hold. Then for any η̄ > 0 there exists a N ∈ N
such that

sup
P∈P

P (Λ(KP , gP , cn) 6= ∅,Λ(Kn, gn, cn) = ∅) < η̄, (C.21)
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for all n ≥ N .

Proof of Theorem C.1. Let B(DP , eP , ρ) denote the set of basic solutions,

B(DP , eP , ρ) ≡ {λC ∈ Rd : λC = (KC′
P )−1gC , |det(KC

P )| > 0,∃C ⊂ {1, . . . , J + 2d}, |C| = d}.

Note that the cardinality of the set B(DP , eP , ρ) is finite. Define the collection of constraint indexes that form

a basic optimal solution by

C(DP , eP , ρ) ≡ {C ⊂ {1, . . . , J + 2d} : λC ∈ B(DP , eP , ρ) ∩ S(DP , eP , ρ)}.

The set M(DP , en, ρ) is a random closed set in RJ+2d, and the set C(DP , eP , ρ) is a random closed set

taking its values in the subsets of {1, . . . , J + 2d}, see Molchanov (2005, Definition 1.1.1). Let

M(DP , en, ρ) ≡ ∪C∈C(DP ,eP ,ρ){µ
C : µC = (KC′

P )−1p}.

In general, M(DP , en, ρ) ⊆M(DP , en, ρ). However, we argue that for all ε > 0,

sup
P∈P

P

(∣∣∣∣∣ max
µ∈M(DP ,en,ρ)

‖µ‖ − sup
µ∈M(DP ,eP ,ρ)

‖µ‖

∣∣∣∣∣ > ε ∩ Λ(KP , gP , cn) 6= ∅

)
< ε. (C.22)

To see why this is the case, observe that each µ ∈M(DP , eP , ρ) solves the equation p = K′Pµ, and µ can

have less than d non-zero entries, exactly d non-zero entries, and more than d non-zero entries.

The first case corresponds to an optimal solution with less than d active inequalities. Let A denote the set

of active inequalities at this optimal solution, with |A| denoting its cardinality. Then p = KA′
P µA. Consider

now an optimal basic solution C ∈ C with A ⊂ C. Then for that basic solution, p = KC′
P µC and µC is uniquely

determined by this equality because KC′
P is invertible by Lemma C.6. Without loss of generality, assume that

KA
P corresponds to the first |A| rows in KC

P . It then follows that µC equals µA followed by d− |A| zeros, and

therefore ‖µA‖ = ‖µC‖.
The case in which µ ∈M(DP , eP , ρ) has more than d non-zero entries corresponds to the case that there

are more than d active inequalities satisfied at a given solution to the linear system. By Lemma C.7, the

probability of this event can be made uniformly smaller than ε.

Finally, we consider the case that µ ∈M(DP , eP , ρ) has exactly d non-zero entries. Denote the indexes of

the non-zero entries of µ by C. We now argue that |det(KC
P )| > 0. Suppose by contradiction that det(KC

P ) = 0.

By Lemma C.6, the probability that det(KC
P ) = 0 and there exists a λ ∈ Rd such that KC

P λ = gCP , is uniformly

equal to zero. This in turn implies that µ /∈M(DP , eP , ρ). Hence (C.22) holds.

Fix an arbitrary collection C ⊂ {1, . . . , J + 2d} of cardinality d such that |det(KC
P )| > 0 . Let µC =

(KC′
P )−1p and let λC = (KC′

P )−1gC . By definition,

p′λC = p′(KC
P )−1gC = µC′gC .

Remark that for given KP , µC is non-stochastic. Suppose ‖µC‖ > Mη. Then

inf
P∈P

P ({C /∈ C} ∩ Λ(KP , gP , cn) 6= ∅) ≥ inf
P∈P

P ({p′λC ∈ ρBd} ∩ Λ(KP , gP , cn) 6= ∅)

≥ inf
P∈P

P ({p′λC ∈ ρBd} ∩ Λ(KP , gP , cn) 6= ∅ ∩ |det(KC
P )| > 0)

where the first inequality follows because if λC is outside the ρ box, it cannot be optimal. The result then

follows from Lemma C.5, observing that C has finite cardinality.

Proof of Theorem C.2. Let C(Dn, en, ρ) and M(Dn, en, ρ) be defined analogously to C(DP , eP , ρ) and

M(DP , eP , ρ). By Lemma C.8, we have that the analogs of Lemmas C.5, C.6, and C.7 hold when KP

and gP are replaced by Kn and gn. Hence the result follows.
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Proof of Theorem C.3. For any index set C such that |C| = d and KC
P λ

C = gCP , Lemma C.6 yields that

sup
P∈P

P ({λC ∈ Λ(KP , gP , cn)} ∩ det(KC
P ) = 0) = 0,

and for any η > 0 there exists ᾱη such that

sup
P∈P

P (0 < |αCd | < ᾱη ∩ {λC ∈ ρBd}) < η/4,

where λC = (KC
P )−1gCP and αCd denotes the smallest eigenvalue of KC′

P KC
P . Recall that

|det(KC
P )| ≥

(√
αCd

)d
.

If |det(KC
n )| > 0, let λCn = (KC

n )−1gCn . Because Kn →p KP uniformly, and the determinant is a continuous

function of its argument, we have that for any η > 0 there exists a N ∈ N such that

sup
P∈P

P (|det(KC
P )| ≥

(√
ᾱη
)d ∩ |det(KC

n )| = 0) < η/4

for all n ≥ N . Let C̃ = {C ∈ {1, . . . , J + 2d} : |C| = d}. It then follows that

sup
P∈P

P (Λ(KP , gP , cn) 6= ∅,Λ(Kn, gn, cn) = ∅)

≤ sup
P∈P

P (∪C∈C̃{λ
C ∈ Λ(KP , gP , cn)} ∩ {Λ(Kn, gn, cn) = ∅})

≤ sup
P∈P

P (∪C∈C̃{λ
C ∈ Λ(KP , gP , cn)} ∩ |det(KC

P )| >
(√

ᾱη
)d ∩ {Λ(Kn, gn, cn) = ∅}) + η/4

≤ sup
P∈P

P
(
∪C∈C̃ {λ

C ∈ Λ(KP , gP , cn)} ∩ |det(KC
P )| >

(√
ᾱη
)d

∩ |det(KC
n )| > 0 ∩ {Λ(Kn, gn, cn) = ∅}

)
+ 2η/4

≤ sup
P∈P

P
(
∪C∈C̃ {λ

C ∈ Λ(KP , gP , cn)} ∩ |det(KC
P )| >

(√
ᾱη
)d

∩ |det(KC
n )| > 0 ∩ {λCn /∈ Λ(Kn, gn, cn)}

)
+ 2η/4

≤ sup
P∈P

P
(
∪C∈C̃ {λ

C ∈ Λ(KP , gP , cn)} ∩ |det(KC
P )| >

(√
ᾱη
)d

∩ |det(KC
n )| > 0 ∩ {∃l ∈ {1, . . . , J + 2d} : K [l]

n λ
C
n > g[l]

n )}) + 2η/4

≤
∑
C∈C̃

sup
P∈P

P
(
{λC ∈ Λ(KP , gP , cn)} ∩ |det(KC

P )| >
(√

ᾱη
)d

∩ |det(KC
n )| > 0 ∩ {∃l ∈ {1, . . . , J + 2d} : K [l]

n λ
C
n > g[l]

n )}) + 2η/4.

Observe that whenever λC ∈ Λ(KP , gP , cn), we have that for all l ∈ {1, . . . , J + 2d}, K [l]
P λ

C ≤ g[l]
P . Using this

fact and Lemma C.7, we have that for all l ∈ {1, . . . , J + 2d} : l /∈ C and for all η > 0 there is an εη such that

sup
P∈P

P

(
0 ≥ K [l]

P

(
KC′
P

)−1

gCP − g
[l]
P ≥ −εη ∩A1

)
< η/4,

with A1 denoting the event that
{
|det(KC

P )| > (
√
ᾱη)d

}
. Next, observe that by assumption, uniformly over

P, Kn →p KP and gn →a.s. gP , so that for all η > 0 and the same εη there is N ∈ N such that

sup
P∈P

P

({∣∣∣∣(K [l]
P

(
KC′
P

)−1

gCP − g
[l]
P

)
−
(
K [l]
n

(
KC′
n

)−1

gCn − g[l]
n

)∣∣∣∣ > εη/2

}
∩A1 ∩A2

)
< η/4
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for all n ≥ N , and where A2 denotes the event |det(KC
n )| > 0. This in turn implies that

sup
P∈P

P
(
{λC ∈ Λ(KP , gP , cn)} ∩ |det(KC

P )| >
(√

ᾱη
)d

∩ |det(KC
n )| > 0 ∩ {∃l ∈ {1, . . . , J + 2d} : K [l]

n λ
C
n > g[l]

n )}) + 2η/4

≤ sup
P∈P

P
(
{λC = (KC

P )−1 ∩ {∀ l ∈ {1, . . . , J + 2d} : l /∈ C, K [l]
P

(
KC′
P

)−1

gCP − g
[l]
P < −εη}}

∩ |det(KC
P )| >

(√
ᾱη
)d ∩ |det(KC

n )| > 0 ∩ {∃l ∈ {1, . . . , J + 2d} : K [l]
n λ

C
n > g[l]

n )}) + 3η/4

≤ η.

Observing that the cardinality of C̃ and the cardinality of {1, . . . , J + 2d} are both finite, the result follows by

choosing η appropriately.

C.3 Auxiliary Lemmas

Lemma C.3: Suppose Assumption 3.1, 3.2, 3.3 hold. Let C denote a subset of {1, . . . , J+2d} of cardinality

d. Suppose C = C1 ∪C2, with C1 ⊂ {J + 1, . . . , J + 2d} an index set of cardinality d1 and C2 ⊂ {1, . . . , J} an

index set of cardinality d2 and d1 + d2 = d, d1 ≥ 1, d2 ≥ 1. Suppose det(KC
P ) 6= 0. Let µC = (KC′

P )−1p. Then

if ‖µC‖ > Mη > 2, it follows that ‖µ[d1+1:d]‖ > (Mη − 2)/2dM̄ .

Proof. Without loss of generality,14 we can write

KC
P =

[
Id1 Od1×d2

DC2
P,d2×d1 DC2

P,d2×d2

]
, KC′

P =

[
Id1 DC2′

P,d2×d1
Od2×d1 DC2′

P,d2×d2

]
,

where Od2×d1 is a d2 × d1 matrix of zeros, and [DC2
P,d1×d2 DC2

P,d1×d1 ] = DC2
P . Let p = [p1; p2], with p1 the

d1 × 1 vector with the first d1 components of p, and p2 the remaining d2 × 1 components. Using the algebra

for matrix blockwise inversion we have that

(
KC′
P

)−1

p =

 p1 −DC2′
P,d2×d1

(
DC2′
P,d2×d2

)−1

p2(
DC2′
P,d2×d2

)−1

p2

 .
We first argue that p2 6= Od2×1. Suppose not. Then, recalling that ‖p‖ = 1, we have ‖µC‖ = 1, contradicting

the assumption.

Next observe that by triangle inequality and elementary operations,

Mη < ‖µC‖ ≤ 2 max

{∥∥∥∥∥p1 −DC2′
P,d2×d1

(
DC2′
P,d2×d2

)−1

p2

∥∥∥∥∥,
∥∥∥∥∥(DC2′

P,d2×d2

)−1

p2

∥∥∥∥∥
}
,

which in turn implies
Mη

2
< 1 + dM̄

∥∥∥µ[d1+1:d]
∥∥∥. (C.23)

Lemma C.4: Under Assumption 3.2-(v), for any ε ≥ 0 and r ∈ R, and for any vector k ∈ RJ+2d such that

‖k[1,...,J]‖ = 1, it follows that

inf
P∈P

P (‖k′gP − r‖ > ε) ≥ 2Φ(−ε/
√
ω). (C.24)

14The use of the Id1 is without loss of generality in the sense that having one or more of its rows multiplied
by −1 will not change the argument.
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Proof. Let N(a, b2) denote a random variable distributed normal, with mean a and variance b2. Then:

inf
P∈P

P
(∥∥k′gP − r∥∥ > ε

)
= inf

P∈P
P
(∥∥∥N (k′EP (g)− r, (k[1:J])′ΩP k

[1:J]
)∥∥∥ > ε

)
≥ inf

P∈P
P
(∥∥∥N (0, (k[1:J])′ΩP k

[1:J]
)∥∥∥ > ε

)
≥ inf

P∈P
P (‖N (0, ω)‖ > ε)

= 2Φ
(
−ε/
√
ω
)
,

where the first inequality uses that for given b2 and ε, P
(∥∥N (a, b2)∥∥ > ε

)
is minimized at a = 0.

Lemma C.5: Suppose Assumptions 3.1, 3.2, 3.3 hold. Fix any q : ‖q‖ = 1. Let λC be such that KC
P λ

C =

gCP , and let µ̃C be such that KC′
P µ̃C = q. For any 0 < η < 1 there is a Mη such that if ‖µ̃C‖ > Mη then

inf
P∈P

P (λC /∈ ρBd) > 1− η. (C.25)

Proof. By Lemma C.6-(i), λC exists with positive probability only if |det(KC
P )| > 0, and therefore

inf
P∈P

P (λC /∈ ρBd) ≥ inf
P∈P

P ({λC /∈ ρBd} ∩ |det(KC
P )| > 0). (C.26)

Initially let C pick only stochastic constraints, in which case it is w.l.o.g. to set C = {1, ..., d}. We then have

inf
P∈P

P
(
λC /∈ ρBd ∩ |det(KC

P )| > 0
)

≥ inf
P∈P

P
(∥∥∥q′λC∥∥∥ > ρ ∩ |det(KC

P )| > 0
)

= inf
P∈P

P
(∥∥∥µ̃C′gC∥∥∥ > ρ ∩ |det(KC

P )| > 0
)

= inf
P∈P

P

(∥∥∥∥[µ̃C′, 0
1×J+d

]
g

∥∥∥∥ > ρ ∩ |det(KC
P )| > 0

)
= inf

P∈P
P

(∥∥∥∥[ µ̃C′

‖µ̃C‖ , 0
1×J+d

]
g

∥∥∥∥ > ρ

‖µ̃C‖ ∩ |det(K
C
P )| > 0

)
≥ 2Φ

(
−ρ/

(
Mη

√
dω
))
≥ 1− η.

If C picks some stochastic constraints and some non-stochastic ones, then define µ̄ to be the (J+2d)-vector

that agrees with µ̃C in components picked by C and is zero otherwise. The above algebra then applies with[
µ̃C′

‖µ̃C‖ , 0
1×J+d

]
replaced by µ̄/

∥∥∥µ̄[1:J]
∥∥∥. The fact that

∥∥∥µ̄[1:J]
∥∥∥ > (Mη − 2)/2dM̄ follows because the vector

µ̄[1:J] contains the entries of µ̃C corresponding to stochastic constraints, and by Lemma C.3, if
∥∥µ̃C∥∥ > Mη we

have that
∥∥∥µ̃[d1+1:d]

∥∥∥ > (Mη−2)/2dM̄ , with µ̃[d1+1:d] denoting the entries of µ̃ corresponding to the stochastic

constraints in C. Hence, Mη can be chosen also in this case so that the result holds. Finally, C cannot pick

only nonstochastic constraints, because in that case ‖µ̃‖ = 1 and the assumption is violated.

Lemma C.6: Suppose Assumptions 3.1, 3.2, 3.3 hold. Fix any index set C of cardinality d. Then

(i)

sup
P∈P

P (det(KC
P ) = 0 ∩ {∃λ ∈ Rd : KC

P λ = gCP }) = 0,

(ii) for any η > 0 there exists ᾱη > 0 such that

sup
P∈P

P (0 < |αCd | < ᾱη ∩ {λC ∈ ρBd}) < η,

where λC = (KC
P )−1gCP and αCd denotes the smallest eigenvalue of KC′

P KC
P .
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Proof. (i) If KC
P is singular, there exists hC ∈ Rd, hC 6= 0, s.t. hC′KC = 0. Then KCλ = gC implies

hC′gC = 0. Let h denote the (J + 2d)-vector that agrees with hC on components corresponding to the index

set C and contains zeros otherwise. If
∥∥∥h[1:J]

∥∥∥ = 0, then the submatrix of KC corresponding to nonstochastic

constraints is singular. This is only possible if C picks opposing faces of the ρ-cube, in which case the conclusion

is obvious. If
∥∥∥h[1:J]

∥∥∥ > 0, let h̃ = h/
∥∥∥h[1:J]

∥∥∥. Then hC′gC = 0 iff h̃′g = 0, but by Lemma C.4 for all ε ≥ 0,

inf
P∈P

P
(∥∥∥h̃′g∥∥∥ > ε

)
≥ 2Φ

(
−ε/
√
ω
)
,

yielding the desired result for ε = 0.

(ii) Let qC denote the eigenvector associated with αCd (recall that because KC′KC is symmetric,
∥∥qC∥∥ =

1). Then we have

1 =
∥∥∥qC∥∥∥ =

∥∥∥qC′qC∥∥∥ =
∥∥∥(KCqC)′(KC′)−1qC

∥∥∥
≤

∥∥∥(KCqC)
∥∥∥∥∥∥(KC′)−1qC

∥∥∥ ,
and therefore, denoting µ̃ = (KC′)−1qC ,

‖µ̃‖2 =
∥∥∥(KC′)−1qC

∥∥∥2

≥ 1

‖(KCqC)‖2
=

1

αCd
>

1

ᾱη
.

It then follows from Lemma C.5 that we can choose ᾱη so that the claim holds.

Lemma C.7: Suppose Assumptions 3.1, 3.2, 3.3 hold. Let D and C denote two distinct subsets of

{1, . . . , J + 2d} of cardinality d, and let λC and λD be such that KC
P λ

C = gCP and KD
P λ

D = gDP . Then

for all ε ≥ 0,

inf
P∈P

P
(
‖λC − λD‖ > ε

)
> 2Φ(−εM̄/

√
ω).

Proof. Pick any two basic solutions indexed by C and D. By Lemma C.6-(i),

sup
P∈P

P
(
{det(KC

P ) = 0 ∩ {∃λ ∈ Rd : KC
P λ = gCP }}

∪ {det(KD
P ) = 0 ∩ {∃λ ∈ Rd : KD

P λ = gDP }}
)

= 0.

Let A1 denote the event that {|det(KC
P )| > 0 ∩ |det(KD

P )| > 0}. Initially assume that both basic solutions

pick only stochastic constraints, then it is w.l.o.g. to assume that C = {1, ..., d} and that d+ 1 ∈ D\C. Next,

λD ∈ {λ : K
[d+1]
P λ = g

[d+1]
P } implies that∥∥∥λC − λD∥∥∥ ≥ d(λC , {λ : K

[d+1]
P λ = g

[d+1]
P }

)
=
|K [d+1]

P λC − g[d+1]
P |∥∥∥K [d+1]

P

∥∥∥ .

Hence,

inf
P∈P

P
(∥∥∥λC − λD∥∥∥ > ε

)
≥ inf

P∈P
P

(∣∣∣∣K [d+1]
P

(
KC′
P

)−1

gCP − g
[d+1]
P

∣∣∣∣ / ∥∥∥K [d+1]
P

∥∥∥ > ε ∩A1

)

= inf
P∈P

P


∣∣∣∣∣∣∣∣∣
[
K

[d+1]
P

(
KC′
P

)−1

,−1, 0
1×J+d−1

]
︸ ︷︷ ︸

=:kP

gP

∣∣∣∣∣∣∣∣∣ > ε
∥∥∥K [d+1]

P

∥∥∥ ∩A1


≥ inf

P∈P
P
(
|k′P gP | > εM̄ ∩A1

)
≥ inf

P∈P
P
(
|k′P gP |/

∥∥∥k[1:J]
P

∥∥∥ > εM̄ ∩A1

)
≥ 2Φ

(
−εM̄/

√
ω
)
,
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with M̄ ≥ ‖K [d+1]
P | ≥ M by Assumptions 3.2-3.3. Here, we used that k

[d+1]
P = −1, hence

∥∥∥k[1:J]
P

∥∥∥ > 1, and

invoked Lemma C.4.

If neither C nor D pick any stochastic constraint, then λC and λD are distinct corners of the ρ-cube

and
∥∥λC − λD∥∥ ≥ ρ with probability one. Finally, assume w.l.o.g. that D but potentially not C contains a

stochastic constraint. Without further loss of generality, assume that 1 ∈ D/C. Let kP denote the (J + 2d)-

vector that agrees with K
[1]
P

(
KC′
P

)−1
in components corresponding to elements of C, that has first component

(−1) and that otherwise equals zero. Then the above algebra applies using the new definition of kP .

Lemma C.8: Suppose Assumptions 3.1, 3.2, 3.3, 3.4 hold. Then for any ε ≥ 0, for any δ > 0, for any

r ∈ R, and for any vector k ∈ RJ+2d such that ‖k[1,...,J]‖ = 1, it follows that there exists N such that n ≥ N

implies

inf
P∈P

P
(∥∥k′gn − r∥∥ > ε

)
≥ 2Φ

(
− (ε+ δ) /

√
ω
)
− δ.

Proof.

inf
P∈P

P
(∥∥k′gn − r∥∥ > ε

)
= inf
P∈P

P
(∥∥k′ (gP + (gn − gP ))− r

∥∥ > ε
)

≥ inf
P∈P

P
(∥∥k′gP − r∥∥ > ε+ δ

)
− P (‖gn − gP ‖ > δ) .

Choosing N such that supP∈P P (‖gn − gP ‖ > δ) ≤ δ and applying Lemma C.4, yields the result.
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