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Abstract. The paper considers panel data models with social interactions when the network is un-

observed and there are endogenous and exogenous social effects. The system of equations is estimated

jointly by a convex program. The method does not require the knowledge of the variances of the

errors nor a subgaussian assumption. It is possible to incorporate linear and sign restrictions and

to impose that the matrices of endogenous and exogenous social effects have same nonzeros. The

confidence sets are obtained by solving convex programs. Because the network is unknown, it is not

known which exogenous variable does not have a direct effect and can be a valid excluded instrument

for the endogenous variables having a direct effect. Therefore we extend the framework of Gautier

and Tsybakov (2011, 2014) which handles unknown exclusion restrictions to systems of simultaneous

equations. The confidence sets are robust to identification and can be infinite when there is not enough

sparsity/exclusion restrictions, when, for some included endogenous regressor, all instruments are too

weak or when the number of time periods is too small. The second half of the paper presents an

alternative approach that only relies on linear programming. This is numerically very attractive for

the study of large networks.

1. Introduction

Consider a population i = 1, . . . , N of individuals, firms, countries, etc., that are observed over

time t = 1, . . . , T . The model is a system of simultaneous equations where the outcome yi,t of agent i

at time t is determined simultaneously with the outcome of the other agents j 6= i at time t according

to the following model

yi,t = αi +
∑
j 6=i

βj,iyj,t +
∑
j 6=i

γj,izj,t + θTxi,t + δT vt + εi,t,(1.1)

(zj,s)
N
j=1, z̃i,s, xi,s ⊥ εi,t ∀s = 1, . . . , T,(1.2)
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εi,t are i.i.d. with E[εi,t] = 0, E[ε4i,t] <∞ for t = 1, . . . , T, i = 1, . . . , N(1.3)

where ⊥ denotes independence. The fixed effect αi accounts for the unobserved heterogeneity of agents

that is fixed over time. It could be thought as a random variable which could be arbitrarily dependent

with εi,t and the right-hand side variables appearing in (1.1). Writing αi = α+ ηi where E[ηi] = 0, ηi

and ηj for i 6= j could be arbitrarily correlated so that (1.3) allows for arbitrary correlation accross i

between the composite errors ηi + εi,t of the system of simultaneous equations. Also ηi + εi,t can be

heteroskedastic accross i. The fixed effect also allows for a situation where agents are influenced by

the random shocks εj,1 of other agents at time 1 but not later in time. The assumption that εi,t are

i.i.d. and independent of the exogenous variables is maintained to use a bootstrap method and obtain

confidence sets which are not too conservative as well as for the simplicity of the arguments to handle

the serial dependence of the instruments. It is not essential for identification.

The term θTxi,t is of the form ηzi,t + θ̃T x̃i,t where ηzi,t accounts for the direct effect of the

exogenous variable zi,t of agent i on the outcome yi,t and x̃i,t is a vector of control variables to justify

the exogeneity of (zj,s)
N
j=1. The vector xi,t is of size p. The vector vt is a vector of functions of t of size

q. The vector z̃i,t of dimension li × 1 is a vector of variables which are independent of εi,t and serve

to instrument the endogenous variables yi,t. It can contain for example: lagged, present and even

leads of these exogenous variables, lagged values of the variables yi,t (if we further assume that αi is

independent from of εi,t) or lagged first differences yi,s−1 − yi,s−2 for s ≤ t, as well as transformations

of them.

The coefficients βi,j (resp. γi,j) account for the individual endogenous (resp. exogenous) effects

of each other agent j in the population on the outcome for agent i. Some of these coefficients could

be zero in the absence of direct effect. This means that the true model is smaller

(1.4) yi,t = αi +
∑
j∈Pi

βi,jyj,t +
∑
j∈Pi

γi,jzj,t + θTxi,t + δT vt + εi,t

where Pi is the set of agents directly affecting the outcome of agent i. Because the network is not known

by the econometrician, one cannot estimate the smaller model directly. For this reason we consider the

high-dimensional model (1.1) which contains the true parsimonious model as a submodel. When one

knows the groups Pi then one has valid instruments for the endogenous variables yj for j in Pi. One

simply uses the exogenous variables of those who are not in Pi. The strength of these instrumental

variables depends on their correlation with the endogenous variables that have a nonzero coefficient.

Because we consider a setup where the groups Pi are unknown, one does not know which exogenous
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variable could be used to instrument the outcomes of those in Pi. As we shall see, the moment

condition E[wεi,t] = 0 where w is a vector of all exogenous variables, gives rise to overdetermined

systems for every sufficiently sparse model of the form (1.4) so that the model could be identified

without relying on exogenous variables outside those of the model. The confidence sets of this paper,

like those in Gautier and Tsybakov (2011, 2014), are robust to identification. The confidence sets can

also be infinite when the instruments are too weak or when the true model is not sparse enough to

yield overidentification. They are solutions of convex (or linear) programs and we do not rely on a

pretest nor test inversion at every possible value of the parameters.

Because we assume independence between the exogenous variables and the errors, Gautier and

Tsybakov (2011, 2014) provides a solution to estimate a model where the direct effect η of the own

exogenous regressor zi,t, the correlated effect θ̃ and the time effect δ are heterogeneous (i.e., can be

different accross agents and thus are indexed by i). One simply estimates each equation separately

using the STIV estimator. Heterogeneity of the coefficients implies a very high-dimensional model.

Also, we assume that the network is fixed over time. This is a strong assumption which is more likely

to hold over short periods. It is also relatively rare to encounter data sets where T is large. For

all these reasons our baseline model (1.1) with the constraints(1.5), (1.6), (1.7) below is relatively

homogeneous. A section of this paper explains how to modify the proposed procedure to handle other

specifications among which heterogeneous coefficients ηi, θ̃i and/or δi, models where we replace the

scalar variables zi,j by vectors, models with high-dimensional vectors of controls or time effects or

autoregressive models.

We first impose a structure that is present in (1.4). We impose that

(1.5) The matrices (βi,j)i=1,...,N
j=1,...,N

and (γi,j)i=1,...,N
j=1,...,N

have the same zeros

where by convention βi,i = γi,i = 0 for i = 1, . . . , N . This is called group sparsity.

Also, it is usual in the peer effects literature (see, e.g., Manski (1997), Lee (2007), Bramoullé

et al (2009) and Davezies et al (2009)) to consider more homogeneous specifications. For example

in Bramoulé (2009) one has that βi,j = β1lj∈Pi/si and γi,j = γ1lj∈Pi/si where si is the cardinality

of the set Pi. Because the procedure in this paper is based on linear programming ideas we impose

the following constraints which are in the spirit of the model considered thus far in the peer effects

literature

∀i 6= k,
∑
j 6=i

βi,j =
∑
j 6=k

βk,j and
∑
j 6=i

γi,j =
∑
j 6=k

γk,j ,(1.6)
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∃(ξ1, ξ2) ∈ {−1, 1}2 : ∀i, j = 1, . . . , N, ξ1βi,j ≥ 0 and ξ2γi,j ≥ 0 .(1.7)

Under these constraints the matrices (βi,j)i=1,...,N
j=1,...,N

and (γi,j)i=1,...,N
j=1,...,N

are proportional to weighting

matrices where the weights are nonnegative and the row sum of the weight matrices is 1. The

proportionality constants β =
∑

j 6=i βi,j and γ =
∑

j 6=i γi,j for arbitrary i ∈ {1, . . . , N} are the

endogenous and exogenous social effects. In Bramoullé et al. (2009) all nonzeros entries on a row of

the matrices are equal. This structure is not imposed in this paper to allow estimation using a simple

linear or convex program.

Considering that the fixed effect αi is a nuisance parameter, the dimensionality of this problem

can be slightly reduced by taking first differences. This yields the following equations for t = 2, . . . , T

(1.8) ∆(yi)t = ∆

∑
j 6=i

βi,jyj +
∑
j 6=i

γi,jzj + θTxi + δT v + εi


t

,

where we denote for a vector valued sequence (ut)t=1,...,T and t = 2, . . . , T , ∆(u)t = ut−ut−1. Taking

into account the homogeneity constraints (1.6), this equation has 2(N2 − 2N) + p+ q − 1 unknowns.

But the number of nonzero coefficients 2
∑N

i=1(si − 1)− 1 + p+ q can be much smaller. In particular

it could be linear in N if most agents have few connections. The method proposed in this paper

has rates of convergence which, up to a logarithmic factor in the number of instruments (possibly

invalid) and a constant, are the same as if one knew the identity of the nonzero coefficients and were

estimating the low dimensional model. We also provide one type of confidence set that also shares

this “adaptivity” property.

Related literature includes the peer effects literature already mentionned as well as the literature

on spatial models (see in particular Lee and Yu (2010) which considers a spatial autoregressive panel

data models with fixed effects).

Estimation of sparse networks is an active field of research in statistics. The more closely

related model is the Gaussian Structural Equation Model (SEM). There one observes an i.i.d. sample

of vectors (yi,t)i=1,...,N from the model

yi,t =
∑
j 6=i

βi,jyj,t + εi,t, i = 1, . . . , N .

Identification relies strongly on the fact that the errors are iid normal and the directed acyclic graph

(DAG) structure (see Peters and Bühlmann (2014)). The DAG structure means that β = PT P T

where β is the transpose of the matrix (βi,j)i=1,...,N
j=1,...,N

with βi,i = 0, T is strictly lower triangular and

P is a permutation matrix. This precludes for example that yi has direct effect on yj and that yj has
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direct effect on yi which typically happens in Economics in a system of simultaneous equations. The

estimation procedures are currently very demanding: van de Geer and Bühlmann (2013) considers

a `0 penalized log likelihood estimator and Champion (2015) a `1 penalized log likelihood estimator

where the estimation is constrained to matrices β that are compatible with the direct acyclic graph

structure (this is a nonconvex set).

A few articles in econometrics are closely related. Manresa (2013) studies the case when there

is no endogeneous effects. Lam and Souza (2014) allows for endogenous effects but does not use

instrumental variables. It requires much more assumptions on the data generating process. Among

others it is assumed that the variance of the errors εi,t decays to zero uniformly in i when t goes

to infinity, that maxi max{
∑

j 6=i |βi,j |,
∑

j 6=i |γi,j |} < 1. Both Manresa (2013) and Lam and Souza

(2014) rely on an iterative procedure for which, up to our knowledge, the properties are not well

understood. Rose (2015) considers a fully heterogeneous model that can be estimated equation by

equation using the STIV estimator of Gautier and Tsybakov (2014). This paper also contributes to the

recent literature on high-dimensional panel data models (c.f. Belloni et al. (2014) and the references

therein) by allowing for a high-dimensional vector of endogenous regressors. The first approach of

this paper is based on convex programs. There are widely available solvers as well as simple interfaces

(for example CVX, c.f. Grant and Boyd (2013)) to solve convex programs. The linear programming

solution is an important extension to handle many moments and to calculate the confidence sets.

It builds on Gautier and Tsybakov (2013). Linear programming is much faster than Lasso and in

contrast with Gautier and Tsybakov (2013) we propose a method that also allows to obtain robust

confidence sets using linear programming.

2. Identification under sparsity

Consider the model for the outcome of agent i. Condition (1.2) leads to the linear system

(2.1) E

∆ (w)t ∆

∑
j 6=i

βi,jyj +
∑
j 6=i

γi,jzj + θTxi + δT v


t

 = E [∆ (w)t ∆(yi)t]

where we denote for t = 1, . . . , T by wt the vector where we stack all (zi,t)
N
i=1, xi,t and vt. Due to the

independence assumption made in (1.2) one could add an infinite number of moment conditions

(2.2) E

φ(w1, . . . , wT )∆

∑
j 6=i

βi,jyj +
∑
j 6=i

γi,jzj + θTxi + δT v


t

 = E [φ(w1, . . . , wT )∆(yi)t]
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where φ is an arbitrary function. When αi is independent of εi,t then yj,1, . . . , yj,t−1 for j = 1, . . . , N

are independent of εi,t and can be included as arguments of the function φ. When αi is not independent

of εi,t then yj,2 − yj,1, . . . , yj,t−1 − yj,t−2 for j = 1, . . . , N are independent of εi,t and can instead be

included as arguments of the function φ.

In the analysis that follows we do not include the extra moment conditions (2.2). The aim

is to show that the strong exogeneity assumption (1.2) is not essential for identification. We do not

account for the restrictions (1.6) and (1.7) which could have identification power. The analysis follows

Gautier and Tsybakov (2011, 2014) and shows that sparsity can yield identification.

Equation (2.1) corresponds to N + p + q equations and 2N − 2 + p + q unknowns. Imposing

N − 2 independent linear restrictions on the parameters can yield identification. Imposing more than

N − 1 independent linear restrictions on the parameters leads potentially to overidentification. An

example of such restrictions consists in knowing a priori that some coefficients among βi,j and γi,j are

zero. Imposing that some of the γj,i are zero means that there are (unknown) exclusion restrictions.

When γk,i = 0, ∆(zk)t can be used to instrument the right-hand side endogenous outcome of another

agent, say ∆(yj)t for j 6= k, i. For it to be a relevant instrument one needs the partial correlation

between ∆(zk)t and ∆(yj)t to be nonzero. This is similar in spirit to what is called an intransitive

triad in Bramoullé (2009). Assume now that (βi,j)j 6=i and (γi,j)j 6=i both have si nonzeros, that it

corresponds to the same coordinates, and that it is known which coefficients are zero. This yields a

system of N + p + q equations with 2si + p + q unknowns so that one could have overidentification,

knowing the restrictions, when 2si < N .

If one does not know the identity of the nonzero coordinates but imposes an upper bound si

on their number per vector where si < N −1, then there are
(
si

N−1

)
systems with 2si+p+q unknowns

and N + p+ q equations of the form

(2.3) E

∆ (w)t ∆

∑
j∈J

βi,jyj +
∑
j∈J

γi,jzj + θTxi + δT v


t

 = E [∆ (w)t ∆(yi)t]

where J is a subset of {j ∈ {1, . . . , N} : j 6= i} of size si. The image of the matrices

E
[
∆ (w)t

(
∆(y)TJ,t,∆(z)TJ,t,∆(xi)

T
t ,∆(v)Tt

)]
,

where ∆(u)J,t = (∆(u)j,t)j∈J , is a sub vector space of RN of dimension at most 2si + p + q. Its

Lebesgue measure is 0. Identification is obtained when the vector E [∆ (w)t ∆(yi)t] lies only in the

space corresponding to the set J of the true model and for that J the matrix has full rank (i.e.

2si+p+ q). Sparsity can thus yield identification in a case where exclusion restrictions are not known
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in advance and one allows all exogenous variables to have a direct effect on the outcome assumption.

The condition for identification could in principle be tested but considering all possible submatrices is

NP-hard. Rather we propose an inference method that is robust to identification. This yields infinite

confidence sets when one is at the verge of identification due to weak instruments or does not impose

enough sparsity or T is too small.

3. Notations

Denote by Id the identity of size d, by 1 a vector of ones and by 0 a vector of zeros. For a

sequence (tk,t)k=1,...,K
t=1,...,T

we denote by T the transpose of the T×K matrix with corresponding elements,

for example we write

Y =


y1,1 . . . yN,1

...
...

y1,T . . . yN,T

 .

For such a sequence (tk,t)k=1,...,K
t=1,...,T

we denote by T−k the T × (K − 1) the matrix where one suppresses

the kth column and by Tk the T × 1 matrix where one only keeps the kth column. As a result T−k,l

is the lth column of T−k. The case of xi,t and z̃i,t is specific since they are vectors, and we use the

notation

Xi =


(xi,1)1 . . . (xi,1)p

...
...

(xi,T )1 . . . (xi,T )1

 , Z̃i =


(z̃i,1)1 . . . (z̃i,1)li

...
...

(z̃i,T )1 . . . (z̃i,T )li

 .

We also denote by β (resp. γ) the transpose of the matrix (βi,j)i=1,...,N
j=1,...,N

(resp. (γi,j)i=1,...,N
j=1,...,N

)

with βi,i = 0 (resp. γi,i = 0) for i = 1, . . . , N and by β−i,i (resp. γ−i,i) the ith column of β (resp.

γ) where one removes the ith row. We also denote by Θ = (BT , GT , θT , δT )T the vector of unknown

parameters where B = (β−1,1
T , . . . ,β−N,N

T )T and G = (γ−1,1
T , . . . ,γ−N,N

T )T .

We denote by | · |p the usual `p norms for 1 ≤ p ≤ ∞ and define the | · |2,1-norm of the matrix

(B,G) by

|(B,G)|2,1 =

N(N−1)∑
k=1

√
B2
k +G2

k .

This mixed norm is a convex criterion that is used to ensure group sparsity in the model that we

study. In contrast the mixed norm | · |2,0-norm of the vector (B,G) which is defined as the number of

nonzeros of the vector
(√

B2
k +G2

k

)N(N−1)

k=1
is not convex. In Section 5 the | · |∞,1-norm is considered



8 GAUTIER

instead. It is defined for a matrix (B,G) by

|(B,G)|∞,1 =

N(N−1)∑
k=1

max {|Bk|, |Gk|} .

The Helmert’s transformation (see, e.g., Arellano and Bover (1995)) is defined as

D̃ = (DDT )−1/2D

where

D =


−1 1 0 . . . 0 0

0 −1 1 0 0
...

. . .
...

0 0 0 . . . −1 1


of dimension (T − 1) × T and the square-root is the upper triangular Cholesky factorization. Recall

that ordinary least squares when D̃ is applied to the data corresponds to generalized least squares

when the transformation D is used. Recall that D̃1 = 0, D̃T D̃ = IT − 1
T 11T = DT (DDT )−1D is the

within-group operator which is a projection matrix, that D̃D̃T = IT−1 and that for t = 1, . . . , T − 1,

(
D̃εi

)
t

=

√
T − t

T − t+ 1

(
εi,t −

∑T
s=t+1 εi,s

T − t

)
.

Because of this expression we can see that lagged values of the outcome variables yi,t can be used as

supplemental instruments when αi is assumed independent of εi,t. Indeed

∀s < t, E
[
yi,s

(
D̃εi

)
t

]
= E

[
yi,s

(
D̃(εi + αi1)

)
t

]
= 0 .

For example one could take z̃i,1 = 0 and for t = 2, . . . , T − 1, z̃i,t = yi,t−1; z̃i,1 = 0, z̃i,2 = 0 and

t = 3, . . . , T − 1, z̃i,t = yi,t−2; z̃i,1 = 0 and for t = 2, . . . , T − 1, z̃i,t = yj,t−1 for j 6= i, etc. One has

E
[
z̃i
T D̃εi

]
= E

[
z̃i
T D̃ (εi + αi1)

]
= E

[(
D̃T z̃i

)T
(εi + αi1)

]
= 0 .

When αi is not independent of εi,t then one could use as instruments yi,s − yi,s−1 for 2 ≤ s ≤ t− 1.

We use the notation diag {(ak)k=1,...,d} to denote the block diagonal matrix with block diagonal

elements given by the matrices of the sequence (ak)k=1,...,d. Let us introduce the following normaliza-

tion matrices. They are introduced to obtain a procedure that is invariant to the scale of the regressors

DR = diag
{(
DB,DG,DX ,DV

)}
and instruments DI = diag

{(
DG,DZ̃ ,DX ,DV

)}
, where
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DB = diag
{(
DY−i

)
i=1,...,N

}
, DG = diag

{(
DZ−i

)
i=1,...,N

}
, DZ̃ = diag

{(
DZ̃i

)
i=1,...,N

}
,

DY−i = diag


((

1

T
Y−i,k

T D̃T D̃Y−i,k

)−1/2
)
k=1,...,N−1

 ,

DZ−i = diag


((

1

T
Z−i,k

T D̃T D̃Z−i,k

)−1/2
)
k=1,...,N−1

 ,

DZ̃i = diag


((

1

T − 1
Z̃i,k

T
Z̃i,k

)−1/2
)
k=1,...,li

 ,

and

DX = diag


( 1

NT

N∑
i=1

Xi,k
T D̃T D̃Xi,k

)−1/2

k=1,...,p

 ,

DV = diag


((

1

T
Vk

T D̃T D̃Vk

)−1/2
)
k=1,...,q

 .

Define the T × (N − 1) matrix Y −i = DY−iD̃T D̃Y−i (resp. Z−i = DZ−iD̃T D̃Z−i) and

denote its elements by y−i,k,t =
(
Y −i,k

)
t

(resp. z−i,k,t =
(
Z−i,k

)
t
). Define the T × li matrix Z̃i =

DZ̃iD̃T D̃Z̃i and denote its elements by z̃i,t,k =
(
Z̃i

)
t,k

. Define the T × p matrix Xi = DXD̃T D̃Xi

and denote its elements by xi,t,k =
(
Xi

)
t,k

. Finally define the T × q matrix V = DV D̃T D̃V and

denote its elements by vt,k =
(
V
)
t,k

.

The following matrix

Ψ =
1

T − 1



Z−1
T (
Y −1,0, . . . ,0,Z−1,0, . . . ,0,X1,V

)
...

Z−N
T (

0, . . . ,0,Y −N ,0, . . . ,0,Z−N ,XN ,V
)

Z̃1

T (
Y −1,0, . . . ,0,Z−1,0, . . . ,0,X1,V

)
...

Z̃N
T (

0, . . . ,0,Y −N ,0, . . . ,0,Z−N ,XN ,V
)

1√
N

∑N
i=1Xi

T (
Y −1, . . . ,Y −N ,Z−1, . . . ,Z−N ,Xi,V

)
1√
N
V
T
(
Y −1, . . . ,Y −N ,Z−1, . . . ,Z−N ,

∑N
i=1Xi,V

)



.

plays an important role in the analysis. Its dimension is L × (2N(N − 1) + p + q) where L =∑N
i=1(N − 1 + li) + p+ q.
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For a vector V ∈ RK , let J(V ) = {k ∈ {1, . . . ,K} : Vk 6= 0} be its support. Denote by |J |

the cardinality of a set J ⊆ {1, . . . ,K} and by Jc its complement: Jc = {1, . . . ,K} \ J . Denote by

Jend = {1, . . . , N(N − 1)} and by Jex = {N(N − 1) + 1, . . . , 2N(N − 1) + p + q} the indices of the

coefficients of the endogenous variables, respectively exogenous variables in Θ. Given a subset J of

Jend, denote J∩Jex = (N(N − 1) + J)∪{2N(N − 1) + 1, . . . , 2N(N − 1) + p+ q} where N(N − 1) + J is

the set of indices in J to which we add N(N − 1). For V ∈ RK and a set of indices J ⊆ {1, . . . ,K},

define VJ = (V11l{1∈J}, . . . , VK1l{K∈J})
T , where 1l{·} is the indicator function. For a vector V ∈ RK ,

set
−−−−−→
sign(V ) = (sign(V1), . . . , sign(VK)) where

sign(t) =


1 if t > 0

0 if t = 0

−1 if t < 0

For a ∈ R, set a+ = max(0, a) and 1/0 =∞. The convention inf ∅ =∞ is used throughout the text.

Denote the identified set by

(3.1)

Ident =

Θ :
E
[
∆ (w)t ∆

(∑
j 6=i βi,jyj +

∑
j 6=i γi,jzj + θTxi + δT v

)
t

]
= E [∆ (w)t ∆(yi)t]

E
[
z̃i,t∆

(∑
j 6=i βi,jyj +

∑
j 6=i γi,jzj + θTxi + δT v

)
t

]
= E [z̃i,t∆(yi)t]

 .

We will sometimes restrict the class of models to sparse models and make inference on the

sparse identifiable parameters:

Bs = Ident
⋂
{Θ : |J(B)| = |J(G)| ≤ s}

for some upper bound s in {1, . . . , N(N − 1)} on the sparsity. This is the set of vectors of coefficients

compatible with (1) the moment restrictions and (2) a prior upper bound on the number of non-zero

coefficients. These sets satisfy

∀s ≤ s′ ≤ N(N − 1), Bs ⊆ Bs′ ⊆ BN(N−1) = Ident .

4. Approach based on convex programming

4.1. Estimator. The proposed estimator is an extension of the STIV estimator of Gautier and Tsy-

bakov (2011, 2014).
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For a constant r > 0, a parameter (Θ, σ), where Θ = (BT , GT , θT , δT )T , is said to satisfy the

IV-constraint if it belongs to the set

(4.1) Î(rσ) =
⋃

(η1,η2)∈{−1,1}2
Îη1,η2(rσ)

(4.2) Îη1,η2(rσ) =



B,G ∈ RN(N−1) : η1B ≥ 0, η2G ≥ 0, θ ∈ Rp, δ ∈ Rq,

B = (β−1,1
T , . . . ,β−N,N

T )T , G = (γ−1,1
T , . . . ,γ−N,N

T )T ,

1Tβ−1,1 = . . . = 1Tβ−N,N , 1Tγ−1,1 = . . . = 1Tγ−N,N ,

Ri = Yi − Y−iβ−i,i −Z−iγ−i,i −Xiθ − V δ, ∀i = 1 . . . , N,

1
T−1 maxi=1...,N max

{∣∣∣Z−i
T
Ri

∣∣∣
∞
,

∣∣∣∣Z̃iTRi∣∣∣∣
∞

}
≤ σr

1
(T−1)

√
N

max
{∣∣∣∑N

i=1Xi
T
Ri

∣∣∣
∞
,
∣∣∣V T ∑N

i=1Ri

∣∣∣
∞

}
≤ σr


where

(4.3) Q̂(Θ) =
1

N(T − 1)

N∑
i=1

∣∣∣D̃ (Yi − Y−iβ−i,i −Z−iγ−i,i −Xiθ − V δ)
∣∣∣2
2
.

The first conditions in the definition of Îη1,η2(rσ) account for the additional structure (1.6), (1.7) that

is imposed. If one does not impose this structure these constraints can be dropped and the set Î(rσ)

is no longer a union of sets.

The constant r is chosen to obtain a set of admissible parameters Î(rσ) large enough so that it

contains the true vector with probability 1−α where α is a confidence level. The choice of r depends

on the assumption made on the data generating process. A typical (“reference”) behavior using a

simple union bound is

(4.4) r ∼
√

log(L/α)

T
.

For simplicity it is assumed (1.3) and Assumption (4.1) so that one chooses r to be the 1−α quantile

of the following statistic

S =
1

T − 1
max

{
max

i=1,...,N
k=1,...,N−1

∣∣∣∣∣
T∑
t=1

z−i,t,kei,t

∣∣∣∣∣ , max
i=1,...,N
k=1,...,li

∣∣∣∣∣
T∑
t=1

z̃i,t,kei,t

∣∣∣∣∣ ,
max

k=1,...,p

∣∣∣∣∣ 1√
N

N∑
i=1

T∑
t=1

xi,t,kei,t

∣∣∣∣∣ , max
k=1,...,q

∣∣∣∣∣ 1√
N

N∑
i=1

T∑
t=1

vt,kei,t

∣∣∣∣∣
}

(4.5)

where ei,t are i.i.d. standard normal random variables. It can be easily computed by Monte-Carlo

techniques. This is the multiplier bootstrap of Chernozhukov, Chetverikov and Kato (2013).
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Definition 4.1. The Network Self-Tuned IV (N-STIV) estimator is any solution (Θ̂, σ̂) of the follow-

ing minimization problem:

(4.6) min
σ>0, Θ=(BT ,GT ,θT ,δT )T

Θ∈Î(rσ), Q̂(Θ)≤σ2

( ∣∣((DB)−1B, r(DG)−1G
)∣∣

2,1
+ cσ

)
,

where 0 < c < N/
√

2.

For an estimator Θ̂ there corresponds implicitly estimators B̂, β̂−i,i, β̂i,j , Ĝ, θ̂, δ̂, etc. Each

set Îη1,η2(rσ) ∩
{

Θ : Q̂(Θ) ≤ σ2
}

is convex and (Θ̂, σ̂) is the minimum of the 4 minima obtained by

minimizing the objective function 4.6 on the 4 sets Îη1,η2(rσ) for (η1, η2) ∈ {−1, 1}2.

The idea behind the estimator is to select among all admissible vectors that lie in the set Î(rσ)

one which is the most parsimonious as defined by the convex objective function. The natural objective

function would involve a mixed | · |2,0-norm. This delivers a NP -hard problem where one has to search

among all possible submodels. The mixed |·|2,1-norm is a convex relaxation of the |·|2,0-norm. A mixed

norm is used to ensure group sparsity. Lounici et al (2011) also considered the used of a mixed-norm

without endogenity and without the sensitivity analysis that is used in this paper. The estimator (4.6)

is an extension of the STIV estimator of Gautier and Tsybakov (2011, 2014) which can be viewed as

adding the IV -constraint to the square-root Lasso of Belloni, Chernozhukov and Wang (2011) or a

pivotal Dantzig selector of Candès and Tao (2007) based on the IV -constraint. Gautier and Tsybakov

(2011, 2014) also study the case where there is no `1, mixed norm in this paper, in (4.6). In this case

one minimizes the least squares criterion subject to the constraint that Θ belongs to Î(rσ). This was

a new method to do robust inference in the presence of weak instruments which does not involve a

pretest or test inversion for all possible values of the parameters.

4.2. Sensitivity characteristics. Due to sparsity, one is interested in |Ψ∆|∞ for vectors ∆ in the

cone

(4.7) CJ =
⋃

(η1,η2)∈{−1,1}2
CJ,η1,η2

where

(4.8)

CJ,η1,η2 =

 ∆ ∈ Cη1,η2 :
∣∣(∆B

Jc , r∆
G
Jc
)∣∣

2,1
≤

∣∣(∆B
J , r∆

G
J

)∣∣
2,1

+c
(
r
N |∆

G|1 + 1
N |∆

B|1 + r√
N

(
|∆θ|1 + |∆δ|1

))

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and

(4.9) Cη1,η2 =



∆B,∆G ∈ RN(N−1), ∆θ ∈ Rp, ∆δ ∈ Rq :

∆B = (DB)−1
(
B(1) −B(2)

)
, ∆G = (DG)−1

(
G(1) −G(2)

)
,

where for j = 1, 2, η1B
(j) ≥ 0, η2G

(j) ≥ 0 ,

B(j) = (β
(j)
−1,1

T
, . . . ,β

(j)
−N,N

T
)T , G(j) = (γ

(j)
−1,1

T
, . . . ,γ

(j)
−N,N

T
)T ,

1Tβ
(j)
−1,1 = . . . = 1Tβ

(j)
−N,N , 1Tγ

(j)
−1,1 = . . . = 1Tγ

(j)
−N,N


The set J that will be used later is the set J(B) which is assumed to be equal to J(G). The last

inequality comes from the fact that the estimator minimizes the criterion function (4.6) and that B

and G are sparse. Using the Hölder inequality, the inequality that is explicited in (4.8) implies that

(4.10) (1− c
√

2/N)
∣∣(∆B

Jc , r∆
G
Jc
)∣∣

2,1
≤ (1 + c

√
2/N)

∣∣(∆B
J , r∆

G
J

)∣∣
2,1

+ cr
(
|∆θ|1 + |∆δ|1

)
/
√
N

so that (∆B
J ,∆

G
J ) contains most of the mass of the vector (∆B,∆G). The conditions in the definition

of Cη1,η2 account for the additional structure (1.6), (1.7) that is imposed. If one does not impose this

structure these constraints can be dropped and the set CJ is no longer a union of sets.

Let us now introduce various sensitivity characteristics which are key quantities to measure the

accuracy of the estimator. They extend the restricted eigenvalues of Bickel, Ritov and Tsybakov (2009)

and provide sharper bounds even without endogeneity (c.f., Gautier and Tsybakov (2011, 2014)). The

following sensitivities are introduced to bound the estimation of the variance of the errors

κσJ = inf
∆∈CJ

r|∆G|1+|∆B |1+r
√
N(|∆θ|1+|∆δ|1)=N

|Ψ∆|∞

κ2,1,J = inf
∆∈CJ

|(∆B
J ,r∆

G
J )|

2,1
=1

|Ψ∆|∞ .

The coordinate-wise sensitivities for k ∈ {1, . . . , 2N(N − 1) + p+ q} are the quantities

κ∗k,J = inf
∆∈CJ
∆k=1

|Ψ∆|∞ .

Finally, the following sensitivites are used for inference on the social effects

κend
J = inf

∆∈CJ
∀i=1,...,N, 1T (β(1),−i,i−β(2),−i,i)=1

|Ψ∆|∞

κex
J = inf

∆∈CJ
∀i=1,...,N, 1T (γ(1),−i,i−γ(2),−i,i)=1

|Ψ∆|∞ .
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They are coordinate wise sensitivities for a linear combination of coefficients, with the extra restrictions

coming from the fact that it is imposed that these effects are homogeneous. Note that, by similar

arguments as in the proof of Proposition 4.1 (see as well Gautier and Tsybakov (2011, 2014)), one

can show that

κσJ ≥
N − c

√
2

4|J |+ (p+ q)
√
N
κr∞,J(4.11)

κ2,1,J ≥
1√
2|J |

κr∞,J(4.12)

where

κr∞,J = min


inf

∆∈CJ
|∆Jend∩J |∞=1

r
∣∣∣∆

J∩Jex

∣∣∣
∞
≤1

|Ψ∆|∞ , inf
∆∈CJ∣∣∣∆
J∩Jex

∣∣∣
∞

= 1
r

|∆Jend∩J |∞≤1

|Ψ∆|∞


.

All sensitivities depend on c but this dependence is not made explicit for the simplicity of notations.

For the sake of simplicity the paper focuses on estimation of the individual coordinates. This is

essential for a fine study of the variable selection (here the recovery of the adjacency matrix) and is

in the spirit of Lounici (2008) but with an analysis based on the sensitivities. Estimation of vectors

with arbitrary `p norm could also be done like in Gautier and Tsybakov (2011, 2014).

4.3. Choice of r. For a fixed Θ ∈ Ident (or Θ ∈ Bs) one denotes byRi = Yi−Y−iβ−i,i−Z−iγ−i,i−

Xiθ − V δ and by εi = Ri −αi. One has D̃εi = D̃Ri so that

Q̂(Θ) =
1

N(T − 1)

N∑
i=1

∣∣∣D̃εi∣∣∣2
2
.

Denoting by µ2 = E[ε2i,t] and µ4 = E[ε4i,t], one can easily check using Chebyshev’s inequality that the

following result holds.

Lemma 4.1. For every Θ ∈ Ident, E
[
Q̂(Θ)

]
= µ2 and

P
(∣∣∣Q̂(Θ)− µ2

∣∣∣ ≥ ε) ≤ µ4 − µ2
2

ε2NT
.

Denote by P(Θ) the distribution of (zTi,t, z̃
T
i,t, x

T
i,t)

T
t=1 and by P the class of distributions P(Θ)

that satisfy the following assumption.

Assumption 4.1. P(Θ) is such that conditions (1.2) and (1.3) hold and there exists constants c, C,

BT such that:
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(i) ∀i = 1, . . . , N, k = 1, . . . , N − 1, |z−i,t,k| ≤ BT ,

∀i = 1, . . . , N, k = 1, . . . , li, |z̃i,t,k| ≤ BT ,

∀i = 1, . . . , N, k = 1, . . . , p, |xi,t,k| ≤ BT ,

∀k = 1, . . . , q, |vt,k| ≤ BT ;

(ii) µ4 ≤ C;

(iii) B4
T (log(LT ))7/T ≤ CT−c.

For every Θ ∈ Ident and P(Θ) ∈ P, Q̂(Θ) is a consitent estimator of µ2 when NT →∞.

Our main analysis is carried out, by working on the event

(4.13) G(Θ) =



max i=1,...,N
k=1,...,N−1

∣∣∣ 1
T−1

∑T
t=1 z−i,t,kεi,t

∣∣∣ ≤ r√Q̂(Θ)

maxi=1,...,N
k=1,...,li

∣∣∣ 1
T−1

∑T
t=1 z̃i,t,kεi,t

∣∣∣ ≤ r√Q̂(Θ)

maxk=1,...,p

∣∣∣ 1
(T−1)

√
N

∑N
i=1

∑T
t=1 xi,t,kεi,t

∣∣∣ ≤ r√Q̂(Θ)

maxk=1,...,q

∣∣∣ 1
(T−1)

√
N

∑N
i=1

∑T
t=1 vt,kεi,t

∣∣∣ ≤ r√Q̂(Θ)


Recall that the constant r is adjusted to be the 1 − α quantile of S in (4.5). This is because

P (G(Θ)) = E [P (G(Θ)|ws ∀1 ≤ s ≤ T )] so that from Corollary 2.1 in Chernozhukov, Chetverikov and

Kato (2013), P (G(Θ)) ≥ 1− α asymptotically.

For such a choice of r,

lim T→∞,
B4
T (log(LT ))7/T≤CT−c

inf
c,Θ,P: c∈(0,N/

√
2), Θ∈Ident, P(Θ)∈P

P (G(Θ)) ≥ 1− α .

Taking the infimum over the parameter c is innocuous as neither Ident, G(Θ) nor P depend on c.

4.4. Rates of convergence. Let us assume a prior upper bound |J(B)| ≤ s. Reducing P if necessary

one can assume the following.

Assumption 4.2. For every α̃ ∈ (0, 1), Θ ∈ Bs and P(Θ) ∈ P, there exists σ∗, τ∗(c, r) <∞, κend
∗ > 0,

κex
∗ > 0, vk > 0 and κ∗k > 0 for k = 1, . . . , 2N(N − 1) + p+ q and an event G̃(Θ) such that

lim T→∞,
B4
T (log(LT ))7/T≤CT−c

inf
Θ,P: Θ∈Bs, P(Θ)∈P

P
(
G̃(Θ)

)
≥ 1− α̃

and on G̃(Θ)

Q̂(Θ) ≤ σ2
∗ ,(4.14) (

1− r

cκ2,1,J(B)

)−1

+

(
1 +

r

cκ2,1,J(B)

)
≤ τ∗(c, r) ,(4.15)
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κend
J(B) ≥ κ

end
∗ ,(4.16)

κex
J(B) ≥ κ

ex
∗ ,(4.17)

and for every k = 1, . . . , 2N(N − 1) + p+ q,

κ∗k,J(B) ≥ κ∗k ,(4.18)

(DR)−1
k,k ≥ vk .(4.19)

An upper bound of the type (4.14) is easily obtained from Lemma 4.1. When T exceeds the

number of instruments which itself exceeds the number of right-hand side variables in (1.8) Ψ is likely

to have full column rank so that κend
∗ > 0, κex

∗ > 0 and κ∗k > 0 for k = 1, . . . , 2N(N − 1) + p+ q hold.

In the high-dimensional case, the restriction ∆ ∈ CJ(B) (which includes the restrictions in Cη1,η2 as

well as the one explicited in (4.8)) when |J(B)| is not too large makes (4.18) likely to hold. Condition

(4.19) is very mild. It is a lower bound on the square-root of the empirical second moments of the

transformed regressors. The constants in Assumption 4.2 can depend on Θ.

The following theorem gives rates of convergence for the N-STIV estimator.

Theorem 4.1. Under assumptions 4.1 and 4.2, for every Θ in Bs, on the event G(Θ)∩ G̃(Θ) and for

the constants of Assumption 4.2, for any solution (Θ̂, σ̂) of the minimzation problem (4.6)

(i) for all k = 1, . . . , 2N(N − 1) + p+ q, the following inequalities hold∣∣∣Θ̂k −Θk

∣∣∣ ≤ σ∗(1 + τ∗(c, r)) r

vk κ∗k
,(4.20) ∣∣∣β̂k − βk∣∣∣ ≤ σ∗(1 + τ∗(c, r)) r

κend
∗

,(4.21) ∣∣∣γ̂ − γk∣∣∣ ≤ σ∗(1 + τ∗(c, r)) r

κex
∗

,(4.22)

(ii) if

(4.23) min
k∈J(B)

vkκ∗k|Θk| > σ∗(1 + τ∗(c, r)) r ,

then J(B) ⊆ J(B̂) and if

(4.24) min
k∈J(B)+N(N−1)

vkκ∗k|Θk| > σ∗(1 + τ∗(c, r)) r ,

then J(G) ⊆ J(Ĝ).
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For reasonably large sample size (typically T � log(L)), the value r is small, and τ∗(c, r) is

approaching 1 as r → 0.

In the model considered in Bramoullé et al (2009) the entries of the matrix (βi,j)i=1,...,N
j=1,...,N

are

such that either βi,j = 0 or βi,j = β
si

where si denotes the size of the group of peers directly influencing

agent i. Assume that for every i = 1, . . . , N , si ≤ s. Therefore, condition (4.23) is satisfied when

|β| > σ∗s(1 + τ∗(c, r)) r
1

mink∈J(B) vkκ∗k
.

This can typically be achieved when
√
T is sufficiently large relative to

√
log(L/α)

(
s

mink∈J(B) vkκ∗k

)
.

Recovering a direct effect of agent j on agent i is dificult when i has many peers and when the best

instrument for yj,t is weak. A similar analysis hold for the matrix (γi,j)i=1,...,N
j=1,...,N

of exogenous social

effects but there κ∗k are usually larger because of exogeneity. This makes (4.24) much likely to hold

than (4.23) when both |β| and |γ| are nonzero. When T is large enough and one has sufficiently strong

instruments for the endogenous effects J(B̂) and J(Ĝ) can both yield upper estimates of the set of

existing connections and can then be interstected.

4.5. Computable lower bounds on the senstivities. The set J that matters to evaluate the

estimation accuracy is the set J(B). To obtain confidence sets let us rely on lower bounds that does

not depend on the perfect knowledge of J(B). As in Gautier and Tsybakov (2011, 2014) two methods

could be used: (1) either one has at his disposal a set J̃ ⊇ J(B) or (2) the sparsity certificate approach

where one specifies an upper bound on the number of nonzeros. Let us now provide lower bounds

that can be easily computed by convex programs.

Proposition 4.1. When 0 < c < N/
√

2 and J̃ ⊇ J the following lower bounds hold

(i) κσJ ≥ κσ
(
J̃
)

where

κσ
(
J̃
)

=
N − c

√
2

4
∣∣∣J̃∣∣∣+ (p+ q)

√
N

min
(η1,η2)∈{−1,1}2

min

{
1

r
κσ,Jexη1,η2

(
J̃
)
, κσ,Jendη1,η2

(
J̃
)}

κσ,Jexη1,η2

(
J̃
)

= min
j∈J∩J̃ex

inf
∆∈Cη1,η2

∆j=1

max
{
r
∣∣∣∆G

J̃

∣∣∣
∞
,r|∆θ|∞,r|∆δ|∞,

∣∣∣∆B
J̃

∣∣∣
∞

}
≤r(

1−c
√

2
N

)∣∣∣(∆B
J̃c
,r∆G

J̃c

)∣∣∣
2,1
≤r
(√

2
(

1+c
√
2
N

)
|J̃|+ c√

N
(p+q)

)
|Ψ∆|∞
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κσ,Jendη1,η2

(
J̃
)

= min
j∈Jend∩J̃

inf
∆∈Cη1,η2

∆j=1

max
{
r
∣∣∣∆G

J̃

∣∣∣
∞
,r|∆θ|∞,r|∆δ|∞,

∣∣∣∆B
J̃

∣∣∣
∞

}
≤1(

1−c
√
2
N

)∣∣∣(∆B
J̃c
,r∆G

J̃c

)∣∣∣
2,1
≤
(√

2
(

1+c
√
2
N

)
|J̃|+ c√

N
(p+q)

)
|Ψ∆|∞

(ii) For all k = 1, . . . , 2N(N − 1) + p+ q, κ∗k,J ≥ κ∗k
(
J̃
)

where

κ∗k

(
J̃
)

= min
(η1,η2,η3)∈{−1,1}3

min
{
κ∗,Jexk,η1,η2,η3

(
J̃
)
, κ∗,Jendk,η1,η2,η3

(
J̃
)}

κ∗,Jexk,η1,η2,η3

(
J̃
)

= min
j∈J∩J̃ex

inf
∆∈Cη1,η2

∆k=1
η3∆j≥0

max
{
r
∣∣∣∆G

J̃

∣∣∣
∞
,r|∆θ|∞,r|∆δ|∞,

∣∣∣∆B
J̃

∣∣∣
∞

}
≤rη3∆j(

1−c
√

2
N

)∣∣∣(∆B
J̃c
,r∆G

J̃c

)∣∣∣
2,1
≤rη3∆j

(√
2
(

1+c
√
2
N

)
|J̃|+ c√

N
(p+q)

)

|Ψ∆|∞

κ∗,Jendk,η1,η2,η3

(
J̃
)

= min
j∈Jend∩J̃

inf
∆∈Cη1,η2

∆k=1
η3∆j≥0

max
{
r
∣∣∣∆G

J̃

∣∣∣
∞
,r|∆θ|∞,r|∆δ|∞,

∣∣∣∆B
J̃

∣∣∣
∞

}
≤η3∆j(

1−c
√
2
N

)∣∣∣(∆B
J̃c
,r∆G

J̃c

)∣∣∣
2,1
≤η3∆j

(√
2
(

1+c
√
2
N

)
|J̃|+ c√

N
(p+q)

)

|Ψ∆|∞

(iii) κend
J ≥ κend

(
J̃
)

where κend
(
J̃
)

is obtained like κ∗k

(
J̃
)

replacing the constraint ∆k = 1 by

∀i = 1, . . . , N, 1T
(
β(1),−i,i − β(2),−i,i

)
= 1.

(iv) κex
J ≥ κex

(
J̃
)

where κex
(
J̃
)

is obtained like κ∗k

(
J̃
)

replacing the constraint ∆k = 1 by ∀i =

1, . . . , N, 1T
(
γ(1),−i,i − γ(2),−i,i

)
= 1.

Proposition 4.2. When 0 < c < N/
√

2 and |J | ≤ s the following lower bounds hold

(i) κσJ ≥ κσ (s) where

κσ (s) =
N − c

√
2

4s+ (p+ q)
√
N

min
(η1,η2)∈{−1,1}2

min

{
1

r
κσ,Jexη1,η2 (s) , κσ,Jendη1,η2 (s)

}

κσ,Jexη1,η2 (s) = min
j∈Jex

inf
∆∈Cη1,η2

∆j=1

max{r|∆G|∞,r|∆θ|∞,r|∆δ|∞,|∆B|∞}≤r(
1−c

√
2
N

)
|(∆B ,r∆G)|

2,1
≤r
(

2
√

2s+ c√
N

(p+q)
)
|Ψ∆|∞

κσ,Jendη1,η2 (s) = min
j∈Jend

inf
∆∈Cη1,η2

∆j=1

max{r|∆G|∞,r|∆θ|∞,r|∆δ|∞,|∆B|∞}≤1(
1−c

√
2
N

)
|(∆B ,r∆G)|

2,1
≤
(

2
√

2s+ c√
N

(p+q)
)
|Ψ∆|∞
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(ii) For all k = 1, . . . , 2N(N − 1) + p+ q, κ∗k,J ≥ κ∗k (s) where

κ∗k (s) = min
(η1,η2,η3)∈{−1,1}3

min
{
κ∗,Jexk,η1,η2,η3

(s) , κ∗,Jendk,η1,η2,η3
(s)
}

κ∗,Jexk,η1,η2,η3
(s) = min

j∈Jex
inf

∆∈Cη1,η2
∆k=1
η3∆j≥0

max{r|∆G|∞,r|∆θ|∞,r|∆δ|∞,|∆B|∞}≤rη3∆j(
1−c

√
2
N

)
|(∆B ,r∆G)|

2,1
≤rη3∆j

(
2
√

2s+ c√
N

(p+q)
)

|Ψ∆|∞

κ∗,Jendk,η1,η2,η3
(s) = min

j∈Jend
inf

∆∈Cη1,η2
∆k=1
η3∆j≥0

max{r|∆G|∞,r|∆θ|∞,r|∆δ|∞,|∆B|∞}≤η3∆j(
1−c

√
2
N

)
|(∆B ,r∆G)|

2,1
≤η3∆j

(
2
√

2s+ c√
N

(p+q)
)

|Ψ∆|∞

(iii) κend
J ≥ κend (s) where κend (s) is obtained like κ∗k(s) replacing the constraint ∆k = 1 by ∀i =

1, . . . , N, 1T
(
β(1),−i,i − β(2),−i,i

)
= 1.

(iv) κex
J ≥ κex (s) where κex (s) is obtained like κ∗k(s) replacing the constraint ∆k = 1 by ∀i =

1, . . . , N, 1T
(
γ(1),−i,i − γ(2),−i,i

)
= 1.

4.6. Exact recovery of the adjacency matrix. Theorem 4.1 (iii) provides an upper estimate on

the set of nonzero components of the matrices (βi,j)i=1,...,N
j=1,...,N

and (γi,j)i=1,...,N
j=1,...,N

. Exact recovery of the

set of nonzeros, and therefore of the adjacency matrix, can be performed as well. For this purpose, a

thresholded N-STIV estimator (B̃, G̃) is used. Its coordinates are defined by

(4.25) B̃k =

 B̂k if |B̂k| > ωk(s),

0 otherwise,

and

(4.26) G̃k =

 Ĝk if |Ĝk| > ωk+N(N+1)(s),

0 otherwise,

where

ωk(s) =
2σ̂
(
DR

)
k,k

r

κ∗k(s)

(
1− r

κσ(s)

)−1

+

.

To provide garantees for the thresholding rule, westrengthen Assumption 4.2 as follows. Reducing P

if necessary one can assume the following.

Reducing P if necessary one can assume the following.
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Assumption 4.3. For s in {1, . . . , N(N − 1)}, for every α̃ ∈ (0, 1) there exist σ∗(s), τ∗(c, r, s) <∞,

κend
∗ (s) > 0, κex

∗ (s) > 0, vk > 0 and κ∗k(s) > 0 for k = 1, . . . , 2N(N − 1) such that, for every Θ ∈ Bs
there exists an event G̃(Θ) such that

lim T→∞,
B4
T (log(LT ))7/T≤CT−c

inf
Θ,P: Θ∈Bs, P(Θ)∈P

P
(
G̃(Θ)

)
≥ 1− α̃

and on G̃(Θ)

Q̂(Θ) ≤ σ2
∗(s) ,(4.27) (

1− r

κσJ(B)

)−1

+

(
1− r

cκ2,1,J(B)

)−1

+

(
1 +

r

cκ2,1,J(B)

)
≤ τ∗(c, r, s) ,(4.28)

κend
J(B) ≥ κ∗end(s) ,(4.29)

κex
J(B) ≥ κ∗ex(s) ,(4.30)

and for every k = 1, . . . , 2N(N − 1),

κ∗k,J(B) ≥ κ∗k(s) ,(4.31)

(DR)−1
k,k ≥ vk .(4.32)

Based on Assumption 4.3, let us consider the following subset Bs where one removes from the

s sparse identifiable vectors those which could be more sparse and have some coordinates which are

too small to detect.

(4.33) Bs(r) = {Θ ∈ Bs : ∀k ∈ J(B) ∪ (J(B) +N(N + 1)), vkκ∗k(s)|Θk| > 4σ∗(s)τ∗(c, r, s) r} .

The following theorem shows that, based on thresholding of the N-STIV estimator, it is possible to

recover the set of non-zero coefficients J(B) and J(G) with probability close to 1and to achieve sign

consistency (i.e., to recover the vector of signs of the coefficients of B (resp. G) with probability close

to 1).

Reducing P if necessary one can assume the following.

Theorem 4.2. Under assumptions 4.1 and 4.3 for s in {1, . . . , N − 1} and α̃ in (0, 1), for every Θ

in Bs(r), on the event G(Θ) ∩ G̃(Θ) one has

(4.34)
−−−−−−−−−−−−→
sign((B̃T , G̃T )T ) =

−−−−−−−−−−−−→
sign((BT , GT )T )

and thus J(B̃) = J(G̃) = J(B),
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Conditions (4.23), (4.24) and the condition in the definition of Bs(r) are referred to as beta-min

assumptions.

4.7. Confidence sets.

4.7.1. Confidence sets based on an estimated support.

Theorem 4.3. Let 0 < c < N/
√

2, and let the assumptions of Theorem 4.2 hold for s in {1, . . . , N−1}

and α̃ in (0, 1). Set Ĵ = J(B̃) or Ĵ = J(G̃) where B̃ and G̃ defined in (4.25). For every Θ in Bs(r)

on the event G(Θ) ∩ G̃(Θ), for any solution (Θ̂, σ̂) of the minimization problem (4.6) the following

inequalities hold:

for every k = 1, . . . , 2N(N − 1) + p+ q,

(4.35)
∣∣∣Θ̂k −Θk

∣∣∣ ≤ 2σ̂r
(
DR

)
k,k

κ∗k

(
Ĵ
)

1− r

κσ
(
Ĵ
)
−1

+

,

(4.36)
∣∣∣β̂ − β∣∣∣ ≤ 2σ̂r

κend
(
Ĵ
)
1− r

κσ
(
Ĵ
)
−1

+

,

(4.37)
∣∣∣γ̂ − γ∣∣∣ ≤ 2σ̂r

κex
(
Ĵ
)
1− r

κσ
(
Ĵ
)
−1

+

.

The sets defined in Theorem 4.3 can be computed from the data. They do not require to know

the exact sparsity of the vector Θ however they require an upper bound s and to restrict the parameter

space and consider Bs(r). Because their width depends on Ĵ which is the true set J(Θ), which can

be much smaller than s, they are called adaptive confidence sets (c.f., Gautier and Tsybakov (2011,

2014) and Nickl and van de Geer (2013)). The confidence sets have coverage 1 − α − α̃ because all

inequalities in Theorem 4.3 hold on the event G(Θ) ∩ G̃(Θ) where

lim T→∞,
B4
T (log(LT ))7/T≤CT−c

inf
Θ,P: Θ∈Bs(r), P(Θ)∈P

P
(
G(Θ) ∩ G̃(Θ)

)
≥ 1− α− α̃ .

Remark 4.1. One does not need to introduce the event G̃(Θ) when the variance of the errors is known

and the matrix Ψ is considered as fixed. This does not make sense in the presence of endogenous

variables.
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Note that for all α̃, the sets Bs(r) increase when T increases and Bs =
⋃
n∈N Bs(

1
n).

Under Assumption 4.3 one can use either Ĵ = J(B̃) or Ĵ = J(G̃). However the set Bs(r) might

be too small for small T or when instruments are all too weak. It is possible to work with larger sets,

for example

BBs (r) = {Θ ∈ Bs : ∀k ∈ J(B), vkκ∗k(s)|Θk| > 4σ∗(s)τ∗(c, r, s) r}

or

BGs (r) = {Θ ∈ Bs : ∀k ∈ J(B) +N(N + 1), vkκ∗k(s)|Θk| > 4σ∗(s)τ∗(c, r, s) r} .

Because the coordinate-wise sensitivities are usually smaller for the exogeneous regressors, the set

BGs (r) is usually larger than BBs (r) so that it is prefereable to use Ĵ = J(G̃).

If instead of working with the assumptions of Theorem 4.3, one relies on the weaker Assumption

4.2, the same plug-in strategy as above can be used. Because of Theorem 4.1 (ii) this yields confidence

sets which are more conservative.

One can also use the confidence sets of Theorem 4.3 constructing the thresholded estimator

based on s = |J(G̃)|.

4.7.2. Confidence Sets Under a Sparsity Certificate. We argued that for the problem at hand and

when the matrices (βi,j)i=1,...,N
j=1,...,N

and (γi,j)i=1,...,N
j=1,...,N

are of the form used in Bramoullé (2009), a beta-

min assumption is valid when T is not too small and there exists at least one strong instrument per

endogenous regressor. Lagged endogenous regressors or their first differences are strongly correlated

with the endogenous regressors.

When T is relatively small, one might prefer a different approach. One can construct confi-

dence sets based on an upper bound s on the sparsity. This is a similar idea as undersmoothing in

nonparametric inference. It is also possible to draw nested confidence sets for different values of s

which include s =
∣∣∣Ĵ∣∣∣ for Ĵ = J(Ĝ), Ĵ = J(G̃), Ĵ = J(B̂) and Ĵ = J(B̃).

Theorem 4.4. Under Assumpion 4.1, for every Θ in Bs, on the event G(Θ), for any c in (0, N/
√

2),

for any solution (Θ̂, σ̂) of the minimization problem (4.6), the following inequalities hold:

for every k = 1, . . . , 2N(N − 1) + p+ q,

(4.38)
∣∣∣Θ̂k −Θk

∣∣∣ ≤ 2σ̂r
(
DR

)
k,k

κ∗k (s)

(
1− r

κσ (s)

)−1

+

,

(4.39)
∣∣∣β̂ − β∣∣∣ ≤ 2σ̂r

κend(s)

(
1− r

κσ(s)

)−1

+

,
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and

(4.40)
∣∣∣γ̂ − γ∣∣∣ ≤ 2σ̂r

κex(s)

(
1− r

κσ(s)

)−1

+

.

Each value of c delivers a random set Cc that only depends on the data and the sparsity certifi-

cate s. However, because the set of inequalities in Theorem 4.4 holds on the event G(Θ) for every c, the

set
⋂
c∈(0,N/

√
2)∩D Cc where D is countable yields a measurable set such that P

(⋂
c∈(0,N/

√
2)∩D Cc

)
≥

P (G(Θ)) and thus for any countable set D

lim T→∞,
B4
T (log(LT ))7/T≤CT−c

inf
(Θ,P): Θ∈Bs, P(Θ)∈P

P

 ⋂
c∈(0,N/

√
2)∩D

Cc

 ≥ 1− α .

The more sets Cc are interstected the smaller the confidence set. In practice one can make an inter-

section over a finite grid on (0, N/
√

2).

4.7.3. Discussion. The confidence sets can be infinite. Indeed the upper bounds in Theorem 4.3 in-

volve the term

(
1− r

κσ(Ĵ)

)−1

+

, while the upper bounds in Theorem 4.4 involve the term
(

1− r
κσ(s)

)−1

+
.

Possibly infinite confidence sets is the price to pay for robustness to identification as explained in Du-

four (1997). The confidence sets can be infinite when r is too small. This can be due to T which is too

small or log(L) which is too large. Note that in the specification discused so far, without relying on

auxiliary instruments, log(L) is of the order of log(N). The confidence sets can also be infinite when

the lower bound on the sensitivity in the denominator is too small. This occurs when there is not a

single sufficiently strong instrument for one of the endogenous variable. This is unlikely if one uses

lagged endogenous regressors or their first differences as instrumental variables. Recall as well that

the cone condition for an estimated Ĵ gives more weight to the endogenous variables corresponding

to the indices in Ĵ . When a sparsity certificate is used, the lower bound on the sensitivity can be

small when s is too large. This confidence sets are two types of uniform confidence sets for identifiable

parameters (see Romano and Shaikh (2008)). But here, like in Gautier and Tsybakov (2011, 2014),

we restrict our attention to sparse vectors in the identified set.

4.8. N-STIV estimator and confidence sets for different specifications. This section explains

how to modify the procedure and results when one considers specifications which are different from

the reference one that we have focused on. Only a few different models are presented for the sake of

conciseness.



24 GAUTIER

4.8.1. High-dimensional set of controls and time effects. When one is uncertain about which own

exogenous variables or time effects to consider one replaces equation (4.6) by

(4.41)

min
σ>0, Θ=(BT ,GT ,θT ,δT )T

Θ∈Î(rσ), Q̂(Θ)≤σ2

(∣∣((DB)−1B, r(DG)−1G
)∣∣

2,1
+ r

√
N

2

∣∣∣(Dθ)−1θ
∣∣∣
1

+ r

√
N

2

∣∣∣(Dδ)−1δ
∣∣∣
1

+ cσ

)

and (4.8) by

(4.42)

CJ,J1,J2,η1,η2 =


∆ ∈ Cη1,η2 :

∣∣(∆B
Jc , r∆

G
Jc
)∣∣

2,1
+

(√
N
2 −

c√
N

)
r
(∣∣∣∆θ

Jc1

∣∣∣
1

+
∣∣∣∆δ

Jc2

∣∣∣
1

)
≤
∣∣(∆B

J , r∆
G
J

)∣∣
2,1

+

(√
N
2 + c√

N

)
r
(∣∣∆θ

J1

∣∣
1

+
∣∣∆δ

J2

∣∣
1

)
+ c

N

(
r|∆G|1 + |∆B|1

)


and work with the sensitivities where one replaces CJ by

CJ,J1,J2 =
⋃

(η1,η2)∈{−1,1}2
CJ,J1,J2,η1,η2 .

An analogue of Theorem 4.1 holds with Assumption 4.2 replacing the sensitivities for the cone CJ(B)

by the sensitivities for the cone CJ(B),J(θ),J(δ). The lower bounds on the sensitivities have to be

modified accordingly and we work with:

κσ,Jexη1,η2

(
J̃ , J̃1, J̃2

)
= min

j∈J∩J̃,J̃1,J̃2ex

inf
∆∈Cη1,η2

∆j=1

max

{
r
∣∣∣∆G

J̃

∣∣∣
∞
,r

∣∣∣∣∆θ
J̃1

∣∣∣∣
∞
,r

∣∣∣∣∆δ
J̃2

∣∣∣∣
∞
,
∣∣∣∆B

J̃

∣∣∣
∞

}
≤r(

1−c
√
2
N

)(∣∣∣(∆B
J̃c
,r∆G

J̃c

)∣∣∣
2,1

+r
√
N
2

(∣∣∣∣∆θ
J̃c1

∣∣∣∣
1

+

∣∣∣∣∆δ
J̃c2

∣∣∣∣
1

))
≤r
(√

2
(

1+c
√
2
N

)
|J̃|+

(
1+c

√
2
N

)√
N
2 (|J̃1|+|J̃2|)

)

|Ψ∆|∞ ,

κσ,Jendη1,η2

(
J̃ , J̃1, J̃2

)
= min

j∈Jend∩J̃
inf

∆∈Cη1,η2
∆j=1

max

{
r
∣∣∣∆G

J̃

∣∣∣
∞
,r

∣∣∣∣∆θ
J̃1

∣∣∣∣
∞
,r

∣∣∣∣∆δ
J̃2

∣∣∣∣
∞
,
∣∣∣∆B

J̃

∣∣∣
∞

}
≤1

(1−c
√

2)
∣∣∣(∆B

J̃c
,r∆G

J̃c

)∣∣∣
2,1

+(1−c)r
(∣∣∣∣∆θ

J̃c1

∣∣∣∣
1

+

∣∣∣∣∆δ
J̃c2

∣∣∣∣
1

)
≤(
√

2+2c)|J̃|+c(|J̃1|+|J̃2|)

|Ψ∆|∞ ,

κ∗,Jexk,η1,η2,η3

(
J̃ , J̃1, J̃2

)
= min

j∈J∩J̃,J̃1,J̃2ex

inf
∆∈Cη1,η2

∆k=1
η3∆j≥0

max

{
r
∣∣∣∆G

J̃

∣∣∣
∞
,r

∣∣∣∣∆θ
J̃1

∣∣∣∣
∞
,r

∣∣∣∣∆δ
J̃2

∣∣∣∣
∞
,
∣∣∣∆B

J̃

∣∣∣
∞

}
≤rη3∆j

(1−c
√

2)
∣∣∣(∆B

J̃c
,r∆G

J̃c

)∣∣∣
2,1

+(1−c)r
(∣∣∣∣∆θ

J̃c1

∣∣∣∣
1

+

∣∣∣∣∆δ
J̃c2

∣∣∣∣
1

)
≤rη3∆j((

√
2+2c)|J̃|+c(|J̃1|+|J̃2|))

|Ψ∆|∞ ,
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κ∗,Jendk,η1,η2,η3

(
J̃ , J̃1, J̃2

)
= min

j∈Jend∩J̃
inf

∆∈Cη1,η2
∆k=1
η3∆j≥0

max

{
r
∣∣∣∆G

J̃

∣∣∣
∞
,r

∣∣∣∣∆θ
J̃1

∣∣∣∣
∞
,r

∣∣∣∣∆δ
J̃2

∣∣∣∣
∞
,
∣∣∣∆B

J̃

∣∣∣
∞

}
≤η3∆j

(1−c
√

2)
∣∣∣(∆B

J̃c
,r∆G

J̃c

)∣∣∣
2,1

+(1−c)r
(∣∣∣∣∆θ

J̃c1

∣∣∣∣
1

+

∣∣∣∣∆δ
J̃c2

∣∣∣∣
1

)
≤η3∆j((

√
2+2c)|J̃|+c(|J̃1|+|J̃2|))

|Ψ∆|∞ ,

where J∩J,J1,J2ex = (N(N − 1) + J) ∪ (2N(N − 1) + J1) ∪ (2N(N − 1) + p + J2), J̃ ⊇ J , J̃1 ⊇ J1 and

J̃2 ⊇ J2, and with

κσ,Jexη1,η2 (s, s1, s2) = min
j∈Jex

inf
∆∈Cη1,η2

∆j=1

max{r|∆G|∞,r|∆θ|∞,r|∆δ|∞,|∆B|∞}≤r
(1−c

√
2)|(∆B ,r∆G)|

2,1
+(1−c)r(|∆θ|

1
+|∆δ|

1
)≤2r(

√
2s+s1+s2)

|Ψ∆|∞ ,

κσ,Jendη1,η2 (s, s1, s2) = min
j∈Jend

inf
∆∈Cη1,η2

∆j=1

max{r|∆G|∞,r|∆θ|∞,r|∆δ|∞,|∆B|∞}≤1

(1−c
√

2)|(∆B ,r∆G)|
2,1

+(1−c)r(|∆θ|
1
+|∆δ|

1
)≤(2

√
2s+s1+s2)

|Ψ∆|∞ ,

κ∗,Jexk,η1,η2,η3
(s, s1, s2) = min

j∈Jex
inf

∆∈Cη1,η2
∆k=1
η3∆j≥0

max{r|∆G|∞,r|∆θ|∞,r|∆δ|∞,|∆B|∞}≤rη3∆j

(1−c
√

2)|(∆B ,r∆G)|
2,1

+(1−c)r(|∆θ|
1
+|∆δ|

1
)≤rη3∆j(2

√
2s+s1+s2)

|Ψ∆|∞ ,

κ∗,Jendk,η1,η2,η3
(s, s1, s2) = min

j∈Jend
inf

∆∈Cη1,η2
∆k=1
η3∆j≥0

max{r|∆G|∞,r|∆θ|∞,r|∆δ|∞,|∆B|∞}≤η3∆j

(1−c
√

2)|(∆B ,r∆G)|
2,1

+(1−c)r(|∆θ|
1
+|∆δ|

1
)≤η3∆j(2

√
2s+s1+s2)

|Ψ∆|∞

for |J | ≤ s, |J1| ≤ s1 and |J2| ≤ s2.

4.8.2. More heterogeneous specifications. Consider the model where θTxi,t is replaced by ηizi,t+ θ̃T x̃i,t

and the constraints (1.6) and (1.7) are dropped. This means that the total endogenous (resp. exoge-

nous) effect of the members of the peer group
∑

j 6=i βi,j (resp.
∑

j 6=i γi,j) is heterogeneous and that

two different members of the peer group can have effects with opposite sign.
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The proposed method can be easily adapted to this setting (and/or heterogeneous θ̃, δ̃) by

changing the definition of Ri in Q̂(Θ) and Î(rσ). The matrix Ψ should also be modified

Ψ =
1

T
DHI



Z−1
TMTM (Y−1,0, . . . ,0,Z−1,0, . . . ,0,X1,0, . . . ,V )

...

Z−N
TMTM (0, . . . ,0,Y−N ,0, . . . ,0,Z−N , ,0, . . . ,XN ,V )

Z̃1
T
MTM (Y−1,0, . . . ,0,Z−1,0, . . . ,0,X1,0, . . . ,V )

...

Z̃N
T
MTM (0, . . . ,0,Y−N ,0, . . . ,0,Z−N ,0, . . . ,XN ,V )

X1
TMTM (Y−1, . . . ,Y−N ,Z−1, . . . ,Z−N ,Xi,V )

1√
N
V TMTM

∑N
i=1 (Y−1, . . . ,Y−N ,Z−1, . . . ,Z−N ,X1,0, . . . ,V )

...

XN
TMTM (Y−1, . . . ,Y−N ,Z−1, . . . ,Z−N ,Xi,V )

1√
N
V TMTM

∑N
i=1 (Y−1, . . . ,Y−N ,Z−1, . . . ,Z−N ,0, . . . ,XN ,V )



DHR

with weighting matrices DHI and DHR slightly modified in an obvous way. The statistic S should

also be modified as follows

S =
1

T
max

{
max

i=1,...,N
k=1,...,N−1

∣∣∣∣∣
T∑
t=1

z−i,t,kei,t

∣∣∣∣∣ , max
i=1,...,N
k=1,...,li

∣∣∣∣∣
T∑
t=1

z̃i,t,kei,t

∣∣∣∣∣ ,
max

i=1,...,N
k=1,...,N−1

max
k=1,...,p

∣∣∣∣∣
T∑
t=1

xHi,t,kei,t

∣∣∣∣∣ ,
max
k=1,...,q

∣∣∣∣∣ 1√
N

N∑
i=1

T∑
t=1

vt,kei,t

∣∣∣∣∣
}

(4.43)

with the new reweigted regressors xHi,t,k.

One also need to drop the constraints coming from (1.6) and (1.7) are dropped in the set Î(rσ) and in

the sensitivites. Since the parameters β and γ are now heterogenous we do not impose the equality in

the sensitivities. New particular parameters of interest are the average endogenous (resp. exogenous)

effect β = 1
N

∑N
i=1

∑
j 6=i βi,j (resp. γ = 1

N

∑N
i=1

∑
j 6=i γi,j) and sensitivities and their lower bounds for

inference on these parameters can be obtained in an obvious way.
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4.8.3. Autoregressive models. Because our method is based on instrumental variables there is no spe-

cific difficulty to make inference with a specification with an autoregressive term

(4.44) yi,t = ρyi,t−1 + αi +
∑
j 6=i

βi,jyj,t +
∑
j 6=i

γi,jzj,t + θTxi,t + δT vt + εi,t .

One can also consider various more or less heterogeneous specifications of equation (4.44) and modify

accordingly the convex program.

4.8.4. Exogenous effects with multiple exogenous variables. When one wants to allow for exogenous

effects with multiple (two in the example below) exogenous variables, one can consider, using obvious

notations, a specification of the form

(4.45) yi,t = αi +
∑
j 6=i

βi,jyj,t +
∑
j 6=i

γ1
i,jz

1
j,t +

∑
j 6=i

γ2
i,jz

2
j,t + θTxi,t + δT vt + εi,t .

We do not impose the natural assumtion that there exists c such that ∀j, i γ1
i,j = cγ2

i,j because this

would lead a nonconvex program (see Lam and Souza (2014).

5. Large networks via linear programming

5.1. Preliminaries. The procedure presented in the preceeding sections involved convex program-

ming. However it is possible to only rely on linear programming. This is in the spririt of the method

in Gautier and Tsybakov (2013). We call it LPN-STIV estimator for Linear Programming Network

Self Tuned IV estimator. The bounds are slightly larger but a linear programming approach but their

computation is faster for large values of N .

Definition 5.1. The first-stage LPN-STIV
(

Θ̂1S , σ̂1S
)

is any solution of

(5.1) min
σ>0, Θ∈Î(rσ)

Θ=(BT ,GT ,θT ,δT )T

( ∣∣((DB)−1B, r(DG)−1G
)∣∣
∞,1 + cσ

)
,

where 0 < c < 1/2.

This can be rewritten as the following linear program

(5.2) min
σ>0, Θ∈Î(rσ), w∈RN(N−1)

Θ=(BT ,GT ,θT ,δT )T

w≥0
∀j=1,...,N(N−1),

∣∣∣((DB)−1B)
j

∣∣∣≤wj
∀j=1,...,N(N−1), r

∣∣∣((DG)−1G)
j

∣∣∣≤wj

 ∑
j=1,...,N(N−1)

wj + cσ

 .
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This first stage estimator is used to obtain a data-driven upper bound of Q̂(Θ). Two sensitivities

are particularly important for this analysis. They are κσ,γJ and

κγ∞,1,J = inf
∆∈CγJ

|(∆B
J ,r∆

G
J )|∞,1=1

|Ψ∆|∞

and are defined in the same way as in the previous sections working on the cone CγJ for γ positive,

defined like CJ (c.f. (4.7)), replacing the cones CJ,η1,η2 in (4.7) by

(5.3)

CγJ,η1,η2 =

 ∆ ∈ Cη1,η2 :
∣∣(∆B

Jc , r∆
G
Jc
)∣∣
∞,1

≤ (2γ + 1)
∣∣(∆B

J , r∆
G
J

)∣∣
∞,1 + γ

(
r
(
|∆G

J |1 + |∆θ|1 + |∆δ|1
)

+ |∆B
J |1
)
 .

Proposition 5.1. When 0 < c < 1/2 and |J | ≤ s, the following lower bounds hold

(i) κσ,γJ ≥ κσ,γ (s) where

κσ,γ (s) =
1

4(2γ + 1)s+ (γ + 1)(p+ q)
min

(η1,η2)∈{−1,1}2
min

{
1

r
κσ,Jex,γη1,η2 (s) , κσ,Jend,γη1,η2 (s)

}
κσ,Jex,γη1,η2 (s) = min

j∈Jex
inf

∆∈Cη1,η2
∆j=1

max{r|∆G|∞,r|∆θ|∞,r|∆δ|∞,|∆B|∞}≤r
∀j, |∆B

j |∞≤wj , r|∆G
j |∞≤wj∑

j wj≤r(2(2γ+1)s+γ(p+q))

|Ψ∆|∞

κσ,Jend,γη1,η2 (s) = min
j∈Jend

inf
∆∈Cη1,η2

∆j=1

max{r|∆G|∞,r|∆θ|∞,r|∆δ|∞,|∆B|∞}≤1

∀j, |∆B
j |∞≤wj , r|∆G

j |∞≤wj∑
j wj≤(2(2γ+1)s+γ(p+q))

|Ψ∆|∞

(ii) κγ∞,1,J ≥ κ
γ
∞,1 (s) where

κγ∞,1 (s) =
1

s
min

(η1,η2)∈{−1,1}2
min

{
1

r
κJex,γ∞,1,η1,η2 (s) , κJend,γ∞,1,η1,η2 (s)

}
κJex,γ∞,1,η1,η2 (s) = min

j∈Jex
inf

∆∈Cη1,η2
∆j=1

max{r|∆G|∞,r|∆θ|∞,r|∆δ|∞,|∆B|∞}≤r
∀j, |∆B

j |∞≤wj , r|∆G
j |∞≤wj∑

j wj≤r(2(2γ+1)s+γ(p+q))

|Ψ∆|∞

κJend,γ∞,1,η1,η2 (s) = min
j∈Jend

inf
∆∈Cη1,η2

∆j=1

max{r|∆G|∞,r|∆θ|∞,r|∆δ|∞,|∆B|∞}≤1

∀j, |∆B
j |∞≤wj , r|∆G

j |∞≤wj∑
j wj≤(2(2γ+1)s+γ(p+q))

|Ψ∆|∞ .
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Moreover, setting

(5.4) c =
λ r

κγ∞,1(s)

with
λ(λ− 1)

λ+ 1
=

γκγ∞,1(s)

(γ + 1)κσ,γ(s)

in the definition of (5.1) yields that, for any Θ in Bs, on the event G(Θ),

(5.5)

√
Q̂(Θ) ≤ C(γ, r, s)

√
Q̂(Θ̂1S)

where

(5.6) C(γ, r, s) =

(
1− 2r(λ+ 1)

(λ− 1)κσ,γ(s)

)−1

+

.

Definition 5.2. The second-stage LPN-STIV Θ̂2S is any solution of

(5.7) min
Θ∈Î

(
rC(γ,r,s)

√
Q̂(Θ̂1S)

)
Θ=(BT ,GT ,θT ,δT )T

∣∣((DB)−1B, r(DG)−1G
)∣∣
∞,1 .

The analysis of the second-stage estimator is based on the cone C2S
J defined like CJ (c.f. (4.7)),

replacing the cones CJ,η1,η2 in (4.7) by

(5.8) C2S
J,η1,η2 =

{
∆ ∈ Cη1,η2 :

∣∣(∆B
Jc , r∆

G
Jc
)∣∣
∞,1 ≤

∣∣(∆B
J , r∆

G
J

)∣∣
∞,1

}
.

They are denoted κ∗2Sk,J , κend,2S
J and κex,2S

J .

5.2. Rates of convergence. Let us introduce the following matrix

Ψ =
1

T
DR



Y−1
TMTM (Y−1,0, . . . ,0,Z−1,0, . . . ,0,X1,V )

...

Y−N
TMTM (0, . . . ,0,Y−N ,0, . . . ,0,Z−N ,XN ,V )

Z−1
TMTM (Y−1,0, . . . ,0,Z−1,0, . . . ,0,X1,V )

...

Z−N
TMTM (0, . . . ,0,Y−N ,0, . . . ,0,Z−N ,XN ,V )

1√
N

∑N
i=1Xi

TMTM (Y−1, . . . ,Y−N ,Z−1, . . . ,Z−N ,Xi,V )

1√
N
V TMTM

∑N
i=1 (Y−1, . . . ,Y−N ,Z−1, . . . ,Z−N ,Xi,V )



DR

and

κJ = sup
∆∈CγJ

|(∆B
J ,r∆

G
J )|∞,1

=1

∣∣∆TΨ∆
∣∣ .
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Let us make the following assumption.

Assumption 5.1. For every α̃ ∈ (0, 1) and Θ ∈ Bs, there exists σ∗, C∗(γ, r, s), τ∗(γ, r, s), κ
end,2S
∗ > 0,

κex,2S
∗ > 0, vk > 0 and κ2S

∗k > 0 for k = 1, . . . , 2N(N − 1) + p+ q and an event G̃(Θ) such that

lim T→∞,
B4
T (log(LT ))7/T≤CT−c

inf
Θ,P: Θ∈Bs, P(Θ)∈P

P
(
G̃(Θ)

)
≥ 1− α̃

and on G̃(Θ)

Q̂(Θ) ≤ σ2
∗ ,(5.9)

C(γ, r, s) ≤ C∗(γ, r, s) ,(5.10)

2λ

(λ− 1)+

 1

κσ(s)
+

2rλκ

√
Q̂(Θ)

(λ− 1)+(κ∞,1(s))2

 ≤ τ∗(γ, r, s) ,(5.11)

κend,2S
J(B) ≥ κ

end,2S
∗ ,(5.12)

κex,2S
J(B) ≥ κ

ex,2S
∗ ,(5.13)

and for every k = 1, . . . , 2N(N − 1) + p+ q,

κ∗2Sk,J(B) ≥ κ
2S
∗k ,(5.14)

(DR)−1
k,k ≥ vk .(5.15)

The following theorem gives rates of convergence for the LPN-STIV estimator.

Theorem 5.1. Under assumptions 4.1 and 5.1, for every Θ in Bs, on the event G(Θ)∩ G̃(Θ) and for

the constants of Assumption 4.2, for any solution Θ̂2S of the minimzation problem (5.7)

(i) for all k = 1, . . . , 2N(N − 1) + p+ q, the following inequalities hold∣∣∣Θ̂2S
k −Θ2S

k

∣∣∣ ≤ 2C∗(γ, r, s)σ∗(1 + rτ∗(γ, r, s)) r

vk κ∗k
,(5.16) ∣∣∣∣β̂2S

− β2S
∣∣∣∣ ≤ 2C∗(γ, r, s)σ∗(1 + rτ∗(γ, r, s)) r

κend
∗

,(5.17) ∣∣∣γ̂2S − γ2S
∣∣∣ ≤ 2C∗(γ, r, s)σ∗(1 + rτ∗(γ, r, s)) r

κex
∗

,(5.18)

(ii) if

(5.19) min
k∈J(B)

vkκ∗k|Θk| > 2C∗(γ, r, s)σ∗(1 + rτ∗(γ, r, s)) r ,
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then J(B) ⊆ J(B̂) and if

(5.20) min
k∈J(B)+N(N−1)

vkκ∗k|Θk| > 2C∗(γ, r, s)σ∗(1 + rτ∗(γ, r, s)) r ,

then J(G) ⊆ J(Ĝ).

5.3. Computable lower bounds on the senstivities.

Proposition 5.2. When 0 < c < 1/2 and J̃ ⊇ J , the following lower bounds hold

(i) For all k = 1, . . . , 2N(N − 1) + p+ q, κ∗2Sk,J ≥ κ∗2Sk

(
J̃
)

where

κ∗2Sk

(
J̃
)

= min
(η1,η2,η3)∈{−1,1}3

min
{
κ∗,Jex,2Sk,η1,η2,η3

(
J̃
)
, κ∗,Jend,2Sk,η1,η2,η3

(
J̃
)}

κ∗,Jex,2Sk,η1,η2,η3

(
J̃
)

= min
j∈J∩J̃ex

inf
∆∈Cη1,η2

∆k=1
η3∆j≥0

∀l∈J̃ , |∆B
l |∞≤wl, r|∆G

l |∞≤wl, wl≤η3∆j∑
l∈J̃ wl≤srη3∆j

|Ψ∆|∞

κ∗,Jend,2Sk,η1,η2,η3

(
J̃
)

= min
j∈Jend∩J̃

inf
∆∈Cη1,η2

∆k=1
η3∆j≥0

∀l∈J̃ , |∆B
l |∞≤wl, r|∆G

l |∞≤wl, wl≤η3∆j∑
l∈J̃ wl≤sη3∆j

|Ψ∆|∞

(ii) κend,2S
J ≥ κend,2S (s) where κend,2S (s) is obtained like κ∗2Sk (s) replacing the constraint ∆k = 1 by

∀i = 1, . . . , N, 1T
(
β(1),−i,i − β(2),−i,i

)
= 1.

(iii) κex,2S
J ≥ κex,2S (s) where κex,2S (s) is obtained like κ∗2Sk (s) replacing the constraint ∆k = 1 by

∀i = 1, . . . , N, 1T
(
γ(1),−i,i − γ(2),−i,i

)
= 1.

Proposition 5.3. When 0 < c < 1/2 and |J | ≤ s, the following lower bounds hold

(i) For all k = 1, . . . , 2N(N − 1) + p+ q, κ∗2Sk,J ≥ κ∗2Sk (s) where

κ∗2Sk (s) = min
(η1,η2,η3)∈{−1,1}3

min
{
κ∗,Jex,2Sk,η1,η2,η3

(s) , κ∗,Jend,2Sk,η1,η2,η3
(s)
}

κ∗,Jex,2Sk,η1,η2,η3
(s) = min

j∈Jex
inf

∆∈Cη1,η2
∆k=1
η3∆j≥0

∀l, |∆B
l |∞≤wl, r|∆G

l |∞≤wl, wl≤η3∆j∑
l wl≤2srη3∆j

|Ψ∆|∞

κ∗,Jend,2Sk,η1,η2,η3
(s) = min

j∈Jend
inf

∆∈Cη1,η2
∆k=1
η3∆j≥0

∀l, |∆B
l |∞≤wl, r|∆G

l |∞≤wl, wl≤η3∆j∑
l wl≤2sη3∆j

|Ψ∆|∞
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(ii) κend,2S
J ≥ κend,2S (s) where κend,2S (s) is obtained like κ∗2Sk (s) replacing the constraint ∆k = 1 by

∀i = 1, . . . , N, 1T
(
β(1),−i,i − β(2),−i,i

)
= 1.

(iii) κex,2S
J ≥ κex,2S (s) where κex,2S (s) is obtained like κ∗2Sk (s) replacing the constraint ∆k = 1 by

∀i = 1, . . . , N, 1T
(
γ(1),−i,i − γ(2),−i,i

)
= 1.

5.4. Exact recovery of the adjacency matrix. Theorem 5.1 (iii) provides an upper estimate on

the set of nonzero components of the matrices (βi,j)i=1,...,N
j=1,...,N

and (γi,j)i=1,...,N
j=1,...,N

. Exact recovery of the

set of nonzeros, and therefore of the adjacency matrix, can be performed as well. For this purpose, a

thresholded LPN-STIV estimator (B̃2S , G̃2S) is used. Its coordinates are defined by

(5.21) B̃2S
k =

 B̂2S
k if |B̂2S

k | > ω2S
k (s) ,

0 otherwise ,

and

(5.22) G̃2S
k =

 Ĝ2S
k if |Ĝ2S

k | > ω2S
k+N(N+1)(s) ,

0 otherwise ,

where

ω2S
k (s) =

2C(γ, r, s)

√
Q̂(Θ̂1S)

(
DR

)
k,k

r

κ∗2Sk

.

Assumption 5.2. For s in {1, . . . , N(N − 1)}, for every α̃ ∈ (0, 1) there exist σ∗(s), τ∗(γ, r, s) <∞,

κend,2S
∗ (s) > 0, κex,2S

∗ (s) > 0, vk > 0 and κ2S
∗k (s) > 0 for k = 1, . . . , 2N(N − 1) + p+ q such that, for

every Θ ∈ Bs there exists an event G̃(Θ) such that

lim T→∞,
B4
T (log(LT ))7/T≤CT−c

inf
Θ,P: Θ∈Bs, P(Θ)∈P

P
(
G̃(Θ)

)
≥ 1− α̃

and

Q̂(Θ) ≤ σ2
∗(s) ,(5.23)

C(γ, r, s) ≤ C∗(γ, r, s) ,(5.24)

2λ

(λ− 1)+

 1

κσ(s)
+

2rλκ

√
Q̂(Θ)

(λ− 1)+(κ∞,1(s))2

 ≤ τ∗(γ, r, s) ,(5.25)

κend,2S
J(B) ≥ κ

end,2S
∗ (s) ,(5.26)

κex,2S
J(B) ≥ κ

ex,2S
∗ (s) ,(5.27)
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and for every k = 1, . . . , 2N(N − 1) + p+ q,

κ∗2Sk,J(B) ≥ κ
2S
∗k (s) ,(5.28)

(DR)−1
k,k ≥ vk .(5.29)

Based on Assumption 5.2, let us consider the following subset Bs where one removes from the

s sparse identifiable vectors those which are more sparse but have some coordinates which are too

small to detect.

(5.30)

Bs(r) = {Θ ∈ Bs : ∀k ∈ J(B) ∪ (J(B) +N(N + 1)), vkκ∗k(s)|Θk| > 4C∗(γ, r, s)σ∗(s)(1 + rτ∗(γ, r, s)) r} .

The following theorem shows that, based on thresholding of the LPN-STIV estimator, it is possible

to recover the set of non-zero coefficients J(B) and J(G) with probability close to 1and to achieve

sign consistency (i.e., to recover the vector of signs of the coefficients of B (resp. G) with probability

close to 1).

Theorem 5.2. Under assumptions 4.1 and 5.2 for s in {1, . . . , N − 1} and α̃ in (0, 1), for every Θ

in Bs(r), on the event G(Θ) ∩ G̃(Θ) one has

(5.31)
−−−−−−−−−−−−→
sign((B̃T , G̃T )T ) =

−−−−−−−−−−−−→
sign((BT , GT )T )

and thus J(B̃) = J(G̃) = J(B),

5.5. Confidence sets.

5.5.1. Confidence sets based on an estimated support.

Theorem 5.3. Let 0 < c < 1/2, and let the assumptions of Theorem 5.2 hold for s in {1, . . . , N − 1}

and α̃ in (0, 1). Set Ĵ = J(B̃) or Ĵ = J(G̃) where B̃ and G̃ defined in (4.25). For every Θ in Bs(r)

on the event G(Θ) ∩ G̃(Θ), for any solution (Θ̂, σ̂) of the minimization problem (5.1) the following

inequalities hold:

For every k = 1, . . . , 2N(N − 1) + p+ q,

(5.32)
∣∣∣Θ̂2S

k −Θk

∣∣∣ ≤ 2
(
DR

)
k,k
C(γ, r, s)

√
Q̂(Θ̂1S) r

κ∗2Sk

(
Ĵ
) ,
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(5.33)

∣∣∣∣β̂2S
− β

∣∣∣∣ ≤ 2C(γ, r, s)

√
Q̂(Θ̂1S) r

κend,2S
(
Ĵ
) ,

(5.34)
∣∣∣γ̂2S − γ

∣∣∣ ≤ 2C(γ, r, s)

√
Q̂(Θ̂1S) r

κex,2S
(
Ĵ
) .

If instead of working with the assumptions of Theorem 5.3, one relies on the weaker Assumption

5.1, the same plug-in strategy as above can be used. Because of Theorem 5.1 (ii) this yields confidence

sets which are more conservative.

One can also use the confidence sets of Theorem 5.3 constructing the thresholded estimator

based on s = |J(G̃)|.

5.5.2. Confidence Sets Under a Sparsity Certificate.

Theorem 5.4. Under Assumpion 4.1, for every Θ in Bs, on the event G(Θ), for any solution (Θ̂, σ̂)

of the minimization problem (4.6), the following inequalities hold:

for every k = 1, . . . , 2N(N − 1) + p+ q,

(5.35)
∣∣∣Θ̂2S

k −Θk

∣∣∣ ≤ 2
(
DR

)
k,k
C(γ, r, s)

√
Q̂(Θ̂1S) r

κ∗2Sk (s)
,

(5.36)

∣∣∣∣β̂2S
− β

∣∣∣∣ ≤ 2C(γ, r, s)

√
Q̂(Θ̂1S) r

κend,2S (s)
,

and

(5.37)
∣∣∣γ̂2S − γ

∣∣∣ ≤ 2C(γ, r, s)

√
Q̂(Θ̂1S) r

κex,2S (s)
.

Each value of γ delivers a random set Cγ that only depends on the data and the sparsity

certificate s. However, because the set of inequalities in Theorem 5.4 holds on the event G(Θ) for every

γ, the set
⋂
γ∈(0,∞)∩D Cγ where D is countable yields a measurable set such that P

(⋂
γ∈(0,∞)∩D Cγ

)
≥

P (G(Θ)) and thus for any countable set D

lim T→∞,
B4
T (log(LT ))7/T≤CT−c

inf
(Θ,P): Θ∈Bs, P(Θ)∈P

P

 ⋂
γ∈(0,∞)∩D

Cγ

 ≥ 1− α .
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6. Appendix

Theorem 6.1. Under Assumpion 4.1, for every Θ in Ident, on the event G(Θ), for any solution

(Θ̂, σ̂) of the minimization problem (4.6), the following inequalities hold,

(6.1) σ̂ ≤ τ(c, r)

√
Q̂(Θ)

where

(6.2) τ(c, r) =

(
1− r

cκ2,1,J(B)

)−1

+

(
1 +

r

cκ2,1,J(B)

)
,

for every k = 1, . . . , N(N − 1) + p+ q,

∣∣∣Θ̂k −Θk

∣∣∣ ≤ (DR
)
k,k

√
Q̂(Θ)(1 + τ(c, r))r

κ∗k,J(B)

(6.3)

∣∣∣Θ̂k −Θk

∣∣∣ ≤ (DR
)
k,k

2σ̂r

κ∗k,J(B)

(
1− r

κσJ(B)

)−1

+

,(6.4)

∣∣∣β̂ − β∣∣∣ ≤
√
Q̂(Θ)(1 + τ(c, r))r

κend
J(B)

(6.5)

∣∣∣β̂ − β∣∣∣ ≤ 2σ̂r

κend
J(B)

(
1− r

κσJ(B)

)−1

+

,(6.6)

∣∣∣γ̂ − γ∣∣∣ ≤
√
Q̂(Θ)(1 + τ(c, r))r

κex
J(B)

(6.7)

∣∣∣γ̂ − γ∣∣∣ ≤ 2σ̂r

κex
J(B)

(
1− r

κσJ(B)

)−1

+

.(6.8)

Proof of Theorem 6.1. Consider here a fixed Θ ∈ Ident. One has that on the event G(Θ), Θ

belongs to Î
(
r

√
Q̂(Θ)

)
.

Set ∆B =
(
DB

)−1
(
B̂ −B

)
, ∆G =

(
DG

)−1
(
Ĝ−G

)
, ∆θ =

(
DX

)−1
(
θ̂ − θ

)
, ∆δ =

(
DV

)−1
(
δ̂ − δ

)
and ∆ =

(
(∆B)T , (∆G)T , (∆θ)T , (∆δ)T

)T
. Note that

∆ =
(
DR

)−1
(

(B̂ −B)T , (Ĝ−G)T , (θ̂ − θ)T , (δ̂ − δ)T
)T

.

The triangle inequality yields that, on the event G(Θ),

(6.9) |Ψ∆|∞ ≤ r
(
σ̂ +

√
Q̂(Θ)

)
.
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On the other hand, (Θ̂, σ̂) minimizes the criterion
∣∣∣((DB

)−1
B, r

(
DG

)−1
G
)∣∣∣
∞,1

+ cσ on the set Î.

Thus, on the event G(Θ),

(6.10)
∣∣∣((DB

)−1
B̂, r

(
DG

)−1
Ĝ
)∣∣∣

2,1
+ cσ̂ ≤

∣∣∣((DB
)−1

B, r
(
DG

)−1
G
)∣∣∣

2,1
+ c

√
Q̂(Θ).

This implies by the triangle inequality and the fact that J(B) = J(G), that on the event G(Θ),∣∣∣(∆B
J(B)c , r∆

G
J(B)c

)∣∣∣
2,1
≤
∣∣∣(∆B

J(B), r∆
G
J(B)

)∣∣∣
2,1

+ c

(√
Q̂(Θ)−

√
Q̂(Θ̂).

)
.

The last inequality holds because by construction

√
Q̂(Θ̂) ≤ σ̂.

Because the function γ →
√
Q̂(γ) is convex, one has√

Q̂(Θ)−
√
Q̂(Θ̂) ≤ 〈w,Θ− Θ̂〉

= 〈DRw, (DR)−1(Θ− Θ̂)〉 = −〈DRw,∆〉 .

where 〈, 〉 is the `2 scalar product, for any w in the subgradient of

√
Q̂ at Θ. With the same argument

as in the proof of Theorem 6.1 in Gautier and Tsybakov (2011, 2014) one obtains

(6.11)

√
Q̂(Θ)−

√
Q̂(Θ̂) ≤ r

N
|∆G|1 +

1

N
|∆B|1 +

r√
N

(
|∆θ|1 + |∆δ|1

)
.

This implies that on the event G(Θ),∣∣∣(∆B
J(B)c , r∆

G
J(B)c

)∣∣∣
2,1
≤
∣∣∣(∆B

J(B), r∆
G
J(B)

)∣∣∣
2,1

+ c

(
r

N
|∆G|1 +

1

N
|∆B|1 +

r√
N

(
|∆θ|1 + |∆δ|1

))
.

In other words, the vector ∆ belongs to the cone CJ(B).

Also, by (6.10) and the definition of κ2,1,J , one obtains

cσ̂ ≤
∣∣∣(∆B

J(B), r∆
G
J(B)

)∣∣∣
2,1

+ c

√
Q̂(Θ)

≤ |Ψ∆|∞
κ2,1,J(B)

+ c

√
Q̂(Θ) .

This yields

(6.12)

(
1− r

cκ2,1,J(B)

)
σ̂ ≤

(
1 +

r

cκ2,1,J(B)

)√
Q̂(Θ) .

Inequalities (6.3), (6.5) and (6.7) follow from (6.9), (6.12) and the definition of the sensitivities.

Now, using the fact that

√
Q̂(Θ̂) ≤ σ̂, (6.9) yield that

|Ψ∆|∞ ≤ r
(

2σ̂ +

√
Q̂(Θ)− σ̂

)
(6.13)

≤ r
(

2σ̂ +

√
Q̂(Θ)−

√
Q̂(Θ̂)

)
(6.14)
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Inequality (6.13) thus yields

(6.15) |Ψ∆|∞ ≤ r
(

2σ̂ +
r

N
|∆G|1 +

1

N
|∆B|1 +

r√
N

(
|∆θ|1 + |∆δ|1

))
.

Using the definition of the sensitivities one gets that, on the event GΘ,

|Ψ∆|∞ ≤ r

(
2σ̂ +

|Ψ∆|∞
κσJ(B)

)
,

which implies

(6.16) |Ψ∆|∞ ≤ 2σ̂r

(
1− r

κσJ(B)

)−1

+

.

The upper bounds (6.4), (6.6) and (6.8) follow from the definition of the sensitivities �

Proof of Theorem 4.1. The rates of convergence are obtained by replacing the random right-hand

sides in Theorem 6.1 by the deterministic upper bounds from Assumption 4.1. �

Proof of Proposition 4.1. Let us prove item (i). The other items are obtained similarly.

Any ∆ in the cone CJ is also in the cone C
J̃
. Now, by the Hölder inequality, any ∆ in the cone C

J̃
is

such that(
1− c

√
2

N

)∣∣∣(∆B
J̃c
, r∆G

J̃c

)∣∣∣
2,1
≤
∣∣∣(∆B

J̃
, r∆G

J̃

)∣∣∣
2,1

+c

(
r

(
1

N

∣∣∣∆G
J̃

∣∣∣
1

+
1√
N
|∆θ|1 +

1√
N
|∆δ|1

)
+

1

N

∣∣∣∆B
J̃

∣∣∣
1

)
.

Let us now consider 4 cases.

Case 1: there exists j ∈ J̃ such that max
{
r
∣∣∣∆G

J̃

∣∣∣
∞
, r|∆θ|∞, r|∆δ|∞,

∣∣∣∆B
J̃

∣∣∣
∞

}
≤ r|∆G

j | then

one has

(6.17)

(
1− c

√
2

N

)∣∣∣(∆B
J̃c
, r∆G

J̃c

)∣∣∣
2,1
≤ r|∆G

j |

(
√

2

(
1 + c

√
2

N

)∣∣∣J̃∣∣∣+
c√
N

(p+ q)

)

and

r

N
|∆G|1 +

1

N
|∆B|1 +

r√
N

(
|∆θ|1 + |∆δ|1

)
≤
√

2

N

∣∣∣(∆B
J̃c
, r∆G

J̃c

)∣∣∣
2,1

(6.18)

+
r

N
|∆G

J̃
|1 +

1

N
|∆B

J̃
|1 +

r√
N

(
|∆θ|1 + |∆δ|1

)
,

thus injecting (6.17) into (6.18) yields

(6.19)
r

N
|∆G|1 +

1

N
|∆B|1 +

r√
N

(
|∆θ|1 + |∆δ|1

)
≤ r|∆G

j |
4
∣∣∣J̃∣∣∣+ (p+ q)

√
N

N − c
√

2
.
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This yields

(6.20)
|Ψ∆|∞

r
N |∆G|1 + 1

N |∆B|1 + r√
N

(|∆θ|1 + |∆δ|1)
≥ |Ψ∆|∞
|∆G

j |
N − c

√
2

r
(

4
∣∣∣J̃∣∣∣+ (p+ q)

√
N
) .

Case 2: there exists j ∈ J such that max
{
r
∣∣∣∆G

J̃

∣∣∣
∞
, r|∆θ|∞, r|∆δ|∞,

∣∣∣∆B
J̃

∣∣∣
∞

}
≤ |∆B

j | then one

has

(6.21)

(
1− c

√
2

N

)∣∣∣(∆B
J̃c
, r∆G

J̃c

)∣∣∣
2,1
≤ |∆B

j |

(
√

2

(
1 + c

√
2

N

)∣∣∣J̃∣∣∣+
c√
N

(p+ q)

)

thus injecting (6.21) into (6.18) yields

(6.22)
r

N
|∆G|1 +

1

N
|∆B|1 +

r√
N

(
|∆θ|1 + |∆δ|1

)
≤ |∆B

j |
4
∣∣∣J̃∣∣∣+ (p+ q)

√
N

N − c
√

2
.

This yields

(6.23)
|Ψ∆|∞

r (|∆G|1 + |∆θ|1 + |∆δ|1) + |∆B|1
≥ |Ψ∆|∞
|∆B

j |
N − c

√
2

4
∣∣∣J̃∣∣∣+ (p+ q)

√
N

.

Case 3: there exists j ∈ {1, . . . , p} such that max
{
r
∣∣∣∆G

J̃

∣∣∣
∞
, r|∆θ|∞, r|∆δ|∞,

∣∣∣∆B
J̃

∣∣∣
∞

}
≤ r|∆θ

j |

then one has

(6.24)

(
1− c

√
2

N

)∣∣∣(∆B
J̃c
, r∆G

J̃c

)∣∣∣
2,1
≤ r|∆θ

j |

(
√

2

(
1 + c

√
2

N

)∣∣∣J̃∣∣∣+
c√
N

(p+ q)

)

thus injecting (6.24) into (6.18) yields

(6.25)
r

N
|∆G|1 +

1

N
|∆B|1 +

r√
N

(
|∆θ|1 + |∆δ|1

)
≤ r|∆θ

j |
4
∣∣∣J̃∣∣∣+ (p+ q)

√
N

N − c
√

2
.

This yields

(6.26)
|Ψ∆|∞

r
N |∆G|1 + 1

N |∆B|1 + r√
N

(|∆θ|1 + |∆δ|1)
≥ |Ψ∆|∞
|∆θ

j |
N − c

√
2

r
(

4
∣∣∣J̃∣∣∣+ (p+ q)

√
N
) .

Case 4: there exists j ∈ {1, . . . , q} such that max
{
r
∣∣∣∆G

J̃

∣∣∣
∞
, r|∆θ|∞, r|∆δ|∞,

∣∣∣∆B
J̃

∣∣∣
∞

}
≤ r|∆δ

j |,

exactly like case 3 one obtains

(6.27)
|Ψ∆|∞

r
N |∆G|1 + 1

N |∆B|1 + r√
N

(|∆θ|1 + |∆δ|1)
≥ |Ψ∆|∞
|∆δ

j |
N − c

√
2

r
(

4
∣∣∣J̃∣∣∣+ (p+ q)

√
N
) �
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Proof of Proposition 4.2. Recall that it is assumed that |J | ≤ s.

Let us prove item (i). The other items are obtained similarly.

Adding (1− c
√

2/N)
∣∣(∆B

J , r∆
G
J

)∣∣
2,1

to both sides of(
1− c

√
2

N

)∣∣(∆B
Jc , r∆

G
Jc
)∣∣

2,1
≤
∣∣(∆B

J , r∆
G
J

)∣∣
2,1

+c

(
r

(
1

N

∣∣∆G
J

∣∣
1

+
1√
N
|∆θ|1 +

1√
N
|∆δ|1

)
+

1

N

∣∣∆B
J

∣∣
1

)
one obtains(

1− c
√

2

N

)∣∣(∆B, r∆G
)∣∣

2,1
≤

(
2− c

√
2

N

)∣∣(∆B
J , r∆

G
J

)∣∣
2,1

+ c

(
r

(
1

N

∣∣∆G
J

∣∣
1

+
1√
N
|∆θ|1 +

1√
N
|∆δ|1

)
+

1

N

∣∣∆B
J

∣∣
1

)
.

We have to consider 4 cases like in the proof of Proposition 4.1. Let us only present the case of Case

1, the other ones are treated similarly.

Case 1: for some j ∈ {1, . . . , N(N − 1)}, max
{
r
∣∣∆G

∣∣
∞ , r|∆

θ|∞, r|∆δ|∞,
∣∣∆B

∣∣
∞
}
≤ r|∆G

j |,

then one has

(6.28)

(
1− c

√
2

N

)∣∣(∆B, r∆G
)∣∣

2,1
≤ r|∆G

j |
(

2
√

2 |J |+ c√
N

(p+ q)

)
,

and thus

(6.29)

(
1− c

√
2

N

)∣∣(∆B, r∆G
)∣∣

2,1
≤ r|∆G

j |
(

2
√

2s+
c√
N

(p+ q)

)
.

Also because

(6.30)

(
1− c

√
2

N

)∣∣(∆B
Jc , r∆

G
Jc
)∣∣

2,1
≤ r|∆G

j |

(
√

2

(
1 + c

√
2

N

)
|J |+ c√

N
(p+ q)

)
and

r

N
|∆G|1 +

1

N
|∆B|1 +

r√
N

(
|∆θ|1 + |∆δ|1

)
≤
√

2

N

∣∣(∆B
Jc , r∆

G
Jc
)∣∣

2,1
+

1

N

∣∣∆B
J

∣∣
1

(6.31)

+ r

(
1

N

∣∣∆G
J

∣∣
1

+
1√
N
|∆θ|1 +

1√
N
|∆δ|1

)
,

injecting (6.30) into (6.31) yields

(6.32)
r

N
|∆G|1 +

1

N
|∆B|1 +

r√
N

(
|∆θ|1 + |∆δ|1

)
≤ r|∆G

j |
4 |J |+ (p+ q)

√
N

N − c
√

2
.

This yields

(6.33)
|Ψ∆|∞

r
N |∆G|1 + 1

N |∆B|1 + r√
N

(|∆θ|1 + |∆δ|1)
≥ |Ψ∆|∞
|∆G

j |
N − c

√
2

r
(

4s+ (p+ q)
√
N
) �
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Proof of Theorem 4.3 and Theorem 4.4. The only unknown in the bounds of Theorem 6.1 is the

set J(B). However, by Theorem 4.2, J(B̃) = J(B) with probablity close to 1, and thus it is possible

to plug in a data-driven Ĵ = J(B̃) instead of J(B). This together with Theorem 6.1 leads to Theorem

4.3. Theorem 4.4 is a simple consequence of Theorem 6.1 and Proposition 4.2. �

Proof of Theorem 4.2. Fix Θ in Bs(r). From the assumptions one can check that

ωk(s) ≤
2σ∗(s)τ∗(c, r, s) r

vkκ∗k(s)
.

The right-hand side that we denote by ω∗k is the upper bound that appears in the upper bound in

Theorem 4.1 (i) under the stronger Assumption 4.2. By assumption, |Bk| > 2ω∗k for k ∈ J(B). Note

that the following two cases can occur. First, if k ∈ J(B)c (so that Bk = 0) then, using (6.4), one

obtains |B̂k| ≤ ωk(s) which implies that B̃k = 0. Second, if k ∈ J(B), then using again (6.4) again

one gets ||Bk| − |B̂k|| ≤ |Bk − B̂k| ≤ ωk(s) ≤ ω∗k. Since |Bk| > 2ω∗k for k ∈ J(B), one obtains that

|B̂k| > ω∗k thus |B̂k| > ωk(s), so that B̃k = B̂k and the signs of Bk and B̂k coincide. The same is true

if one replaces B by G and k by k +N(N + 1). This yields the result. �

Theorem 6.2. Under Assumpion 4.1, for every Θ in Bs, on the event G(Θ), for any solution Θ̂2S of

the minimization problem (4.6), the following inequalities hold, for every k = 1, . . . , N(N − 1) + p+ q,

(6.34)
∣∣∣Θ̂2S

k −Θk

∣∣∣ ≤ 2
(
DR

)
k,k
C(γ, r, s)

√
Q̂(Θ̂1S) r

κ∗2Sk,J(B)

,

(6.35)

∣∣∣∣β̂2S
− β

∣∣∣∣ ≤ 2C(γ, r, s)

√
Q̂(Θ̂1S) r

κend,2S
J(B)

,

(6.36)
∣∣∣γ̂2S − γ

∣∣∣ ≤ 2C(γ, r, s)

√
Q̂(Θ̂1S) r

κex,2S
J(B)

.

Proof of Proposition 5.1. Let us prove item (i).

Any ∆ in the cone CJ,γ is such that

∣∣(∆B, r∆G
)∣∣
∞,1 ≤ 2(γ + 1)

∣∣(∆B
J , r∆

G
J

)∣∣
∞,1 + γ

(
r
(∣∣∆G

J

∣∣
1

+ |∆θ|1 + |∆δ|1
)

+
∣∣∆B

J

∣∣
1

)
.
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Let us show the lower bound considering case 1 out of 4 cases: there one has

max
{
r
∣∣∆G

J

∣∣
∞ , r|∆

θ|∞, r|∆δ|∞,
∣∣∆B

J

∣∣
∞
}
≤ r|∆G

j | for some j, which implies

(6.37)
∣∣(∆B, r∆G

)∣∣
∞,1 ≤ r|∆

G
j | (2(2γ + 1)s+ γ(p+ q)) .

Because

(6.38) r
(
|∆G|1 + |∆θ|1 + |∆δ|1

)
+ |∆B|1 ≤ 2

∣∣(∆B, r∆G
)∣∣
∞,1 + r

(
|∆θ|1 + |∆δ|1

)
,

one obtains that

(6.39) r
(
|∆G|1 + |∆θ|1 + |∆δ|1

)
+ |∆B|1 ≤ r|∆G

j | (4(2γ + 1)s+ (γ + 1)(p+ q)) .

Item (ii) in case 1 follows from the fact that

(6.40)
∣∣(∆B

J , r∆
G
J

)∣∣
∞,1 ≤ rs|∆

G
j | .

(EG) �

Proof of Theorem 6.2. Consider Θ ∈ Bs and denote by ∆ = DR
(

Θ̂2s − Θ̂
)

.

Due to Proposition 4.1, one has that on the event G(Θ), Θ belongs to Î
(
rC(γ, r, s)

√
Q̂(Θ̂1S)

)
.

The triangle inequality yields that, on the event G(Θ),

(6.41) |Ψ∆|∞ ≤ 2rC(γ, r, s)

√
Q̂(Θ̂1S) .

On the other hand, Θ̂2S minimizes (5.7) on the set Î
(
rC(γ, r, s)

√
Q̂(Θ̂1S)

)
. Thus, on the event

G(Θ),

(6.42)
∣∣∣((DB

)−1
B̂2S , r

(
DG

)−1
Ĝ2S

)∣∣∣
∞,1
≤
∣∣∣((DB

)−1
B, r

(
DG

)−1
G
)∣∣∣
∞,1

.

This implies by the triangle inequality and the fact that J(B) = J(G), that on the event G(Θ),∣∣∣(∆B
J(B)c , r∆

G
J(B)c

)∣∣∣
∞,1
≤
∣∣∣(∆B

J(B), r∆
G
J(B)

)∣∣∣
∞,1

.

One concludes using the definition of the sensitivities. �
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[5] Bramoullé, Y., Djebbari, H., and B. Fortin (2009): “Identification of Peer Effects Through Social Networks ”.

Journal of Econometrics, 150, 41–55.

[6] Candès, E., and T. Tao (2007): “The Dantzig Selector: Statistical Estimation when p is Much Larger Than n”.

Annals of Statistics, 35, 2313–2351.
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