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Abstract

This paper develops extremum estimation and inference results for nonlinear models with

very general forms of potential identification failure when the source of this identification

failure is known. We examine models that may have a deficient but nonzero rank Jacobian

matrix in certain parts of the parameter space. We characterize weak identification in these

models by examining sequences of parameters for which the parameter governing the poten-

tial identification failure drifts toward the point of identification failure as the sample size

grows. This analysis leads to a “local to deficient-rank Jacobian” that does not necessarily

have zero rank, allowing us to incorporate many models that have not been previously stud-

ied in the weak identification literature. In order to derive the local asymptotic theory for the

estimators, the paper introduces a transformation of the parameter space as a key technical

step. Asymptotic distributional results for extremum estimators are developed under a com-

prehensive class of identification strengths and uniformly valid inference procedures robust

to identification strength are developed from these results. Importantly, the results allow

one to conduct uniformly valid subvector inference. The paper focuses on four examples of

models to illustrate the results: sample selection models, models of potential outcomes with

endogenous treatment, threshold crossing models, and mixed proportional hazard models.

∗The authors are grateful to Donald Andrews, Xiaohong Chen, Xu Cheng, Yanqin Fan, Bruce Hansen, Ivana
Komunjer, Eric Renault, Edward Vytlacil, Tiemen Woutersen, and participants at the KAEA Summer Camp
2014 and the Texas Econometrics Camp 2015 for helpful comments. This paper is developed from an earlier work
by Han (2009).
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1 Introduction

This paper develops estimation and inference results for nonlinear models with very general

forms of potential identification failure when the source of this identification failure is known.

A substantial portion of the recent econometrics literature has been devoted to estimation and

inference that is robust to the strength of identification of the parameters in an underlying

economic or statistical model. Earlier papers in this line of research focused upon the linear

instrumental variables model, the behavior of standard estimators and inference procedures un-

der weak identification of this model (e.g., Staiger and Stock, 1997), and the development of

new inference procedures robust to the strength of identification in this model (e.g., Kleibergen,

2002 and Moreira, 2003). More recently, focus has shifted to nonlinear models, such as those de-

fined through moment restrictions. In this more general setting, there have similarly been many

attempts to characterize the behavior of standard estimators and inference procedures under

weak identification (e.g., Stock and Wright, 2000) and to develop robust inference procedures

(e.g., Kleibergen, 2005). In nonlinear models, identification failure and weak identification can

be characterized via the rank of the Jacobian matrix. The earlier papers in this literature, such

as Stock and Wright (2000) and Kleibergen (2005), focused upon special cases of identification

failure and weak identification by characterizing how the Jacobian matrix of the underlying

model could be (nearly) singular. Only very recently have researchers been able to develop

inference procedures that are robust to completely general forms of (near) rank-deficiency in

the Jacobian matrix. See Andrews and Mikusheva (2013) in the context of minimum distance

estimation and Andrews and Guggenberger (2014) and Andrews and Mikusheva (2014) in the

context of moment condition models.

Even though these latter papers develop inference procedures that are completely robust

to general forms of the (nearly) singular Jacobian matrix, they are not designed explicitly for

models in which the source of identification failure is known to the researcher. In contrast, the

recent works of Andrews and Cheng (2012a; 2013; 2014a) develop inference procedures that

indeed exploit such knowledge, when it exists, leading to potential gains in terms of the of tests

power or volume of confidence sets, as well as the ability to directly conduct inference on a

subvector of the parameters of the model. However, the models Andrews and Cheng (2012a;
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2013; 2014a) focus upon lead to a specific form of identification failure that corresponds to a

Jacobian matrix of rank zero. Yet there are many models that (i) may exhibit non-identification

at certain parts of the parameter space for which the source of non-identification is known to

the researcher and (ii) have deficient but nonzero rank Jacobian matrices at the point of non-

identification. This paper characterizes the behavior of standard estimators when the model

may be (nearly) unidentified and develops new identification-robust inference procedures for

models with these two characteristics.

This paper analyzes the properties of extremum (e.g., generalized method of moments

(GMM), maximum likelihood (ML), and minimum distance (MD)) estimators under a com-

prehensive class of identification strengths and develops inference procedures that are robust

to the strength of identification. We characterize the identification strength of a given model

in terms of how “close” the model’s Jacobian matrix is to singularity. Let 0 = G∗(θ) be a

functional relationship between a model’s parameters and J∗(θ) ≡ ∂G∗(θ)/∂θ be its Jacobian

matrix. Typically, θ is (locally) identified under the sufficient condition that rank(J∗(θ)) = dθ

in a neighborhood of the true parameter (Rothenberg, 1971), where dθ denotes the dimension

of θ. When rank(J∗(θ0)) = 0 for some θ0, the function G∗ no longer reveals information about

θ0 and the parameter θ is completely unidentified at θ = θ0 (under some regularity conditions).

Andrews and Cheng (2012a, 2013, 2014a) analyze models of this form. In this paper, we are

interested in a more general form of identification failure for which

0 ≤ rank(J∗(θ0)) < dθ. (1.1)

In cases for which the former inequality is strict, although the parameter θ is not identified at

θ = θ0, it is also not completely unidentified in the sense that its identification region is not

equal to the entire parameter space in which it resides. Indeed, making use of an inverse function

theorem due to Hadamard (1906a,b), we characterize the nonidentification curves within the

parameter space for which parameter values along these curves are observationally equivalent.1

This situation is sometimes referred to as “underidentification” (see e.g., Arellano et al., 2012).

In examining more general forms of identification failure, we characterize the known source of

such failure in the same way as Andrews and Cheng (2012a, 2013, 2014a): when one component

of the parameter vector θ is equal to a given value, the Jacobian matrix is singular. This general

form of rank-deficient Jacobian at certain parameter values allows us to cover many interest-

ing examples that are not nested in the settings of Andrews and Cheng (2012a, 2013, 2014a).

These examples include sample selection models, models of potential outcomes with endogenous

1As a related work, see Qu and Tkachenko, 2012 for an example of this type of analysis in the context of
macroeconomic DSGE models.
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treatment, threshold crossing models with a dummy endogenous variable (e.g., bivariate probit

models), mixed proportional hazard models, higher-order ARMA models, and nonlinear regres-

sion models. We focus on the first three of these examples to illustrate our approach throughout

the paper.

In order to conduct a comprehensive analysis and develop uniformly valid inference pro-

cedures, we examine the asymptotic behavior of estimators and test statistics under various

sequences of parameters indexing the data generating process (DGP). Under some of these pa-

rameter sequences, the component of θ governing the parameter’s identification status converges

to the value that induces identification failure as the sample size grows. Under such sequences,

the Jacobian matrix becomes local-to-singular. This drifting sequence asymptotic device allows

us to characterize weak identification in these models, yielding asymptotic distributions of esti-

mators and test statistics that well approximate their finite-sample counterparts. Moreover, the

formation of critical values (CVs) for our uniformly valid inference procedures relies on these

asymptotic approximations.

Unlike the settings of Andrews and Cheng (2012a, 2013, 2014a), we do not necessarily

know which elements of θ are weakly or strongly identified under weak-identification parameter

sequences since the Jacobian matrix can be local-to-singular but nonzero rank. This is a key

aspect of the problems we examine, making it necessary to develop new asymptotic theory and

robust inference procedures. As a crucial step, we transform the parameter space using the

nonidentification curves discussed above. One additional complication arises from the fact that,

in some models, the nonidentification curves often depend upon the true DGP and must therefore

be estimated. The estimation of the curve itself can lead to additional sampling variability in

parameter estimates, leading to necessary adjustments in the asymptotic theory under various

parameter sequences.

We develop uniformly valid tests and confidence intervals based on the Wald and QLR

statistics that are robust to the identification strength of the underlying parameter. We do

so by forming data-dependent CVs that adaptively adjust to the identification strength in the

model. These CVs are versions of the Type I Robust CV of Andrews and Cheng (2012a) and

the adjusted-Bonferroni CV of McCloskey (2012), adapted to the present context. Importantly,

our tests and confidence intervals allow one to conduct inference on a subvector of parameters

in potentially underidentified models for which such inference was previously unavailable.

The paper is organized as follows. In the next section, we introduce the general class of

models under study and provide three examples of models in this class. Section 3 considers

identification and the lack of identification, and based on the results derived there, Section

4 introduces the key technical step, i.e., the transformation of the parameter space. Section 5
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defines criterion functions of the extremum estimators we examine and shows that a transformed

criterion function satisfies a desirable property that is crucial in the subsequent asymptotic

theory. Section 6 discusses the three examples in more details. The asymptotic theory under

drifting parameter sequences is given in Sections 7–8, and inference in Section 9. Section 12

concludes.

2 Class of Models

Suppose that an economic model implies a relationship among the components of a finite-

dimensional parameter θ̃:

0 = G̃(θ̃; γ∗) ≡ G̃∗(θ̃) ∈ RdG̃ (2.1)

when θ̃ = θ̃∗, where θ̃∗ is a component of the true parameter value γ∗ = (θ̃∗, φ̃∗) DGP. The

function describing this relationship G̃ may depend on the true underlying parameter γ∗ of

γ = (θ̃, φ̃), and thus moment conditions may be involved in defining this relationship. The

parameter φ̃ captures the part of the distribution of the observed data that is not determined

by θ̃, which is typically infinite dimensional (Andrews and Cheng, 2012a). When G̃ does not

depend on γ∗, the expression (2.1) specifies a known functional relationship among parameters

in θ̃. An important special case of (2.1) occurs when G̃ does not depend on γ∗ and relates a

structural parameter θ̃ to a reduced-form parameter ζ̃:

0 = ζ̃∗ − g̃(θ̃) ∈ Rdζ̃ (2.2)

when θ̃ = θ̃∗, where ζ̃∗ is the true value of ζ̃.

Oftentimes, econometric models imply a natural decomposition of θ̃: θ̃ = (α, δ, π̃), where the

parameter α determines the “identification status” of π̃. That is, when α 6= ᾱ for some ᾱ, π̃ is

identified; when α = ᾱ, π̃ is not identified; and when α is “close” to ᾱ in a certain sense, then

π̃ is weakly identified. The identification status of the parameter δ is not affected by the value

of α, and within the context of (2.2), the same is trivially so for ζ̃. For convenience, we us the

normalization ᾱ = 0, which is without loss of generality.

We present four examples that satisfy the nonzero deficient rank of the Jacobian (1.1). The

first two and the last examples fall into the framework of (2.1) and the third into (2.2):
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Example 2.1 (Sample selection models)

Yi = X ′iβ1 + εi, Di = 1[δ + Z ′1iα ≥ νi],

(εi, νi) ∼ BV N

((
0

0

)
,

(
σ2
ε ρσεσν

ρσεσν σ2
ν

))
,

where Xi ≡ (1, X ′1i)
′ is k × 1 and Zi ≡ (1, Z ′1i)

′ is l × 1. Note that Zi can include (components

of) Xi. We observe (DiYi, Di, Xi, Zi). Let Wi ≡ (Yi, Xi, Zi) and β2 ≡ −ρσε. Also normalize σ2
ν

to 1. Then, we have

0 =G̃∗(θ̃) = Eγ∗ϕ(Wi, θ̃) ≡ E∗ϕ(Wi, θ̃) (2.3)

when θ̃ = θ̃∗, where the moment function is

ϕ(w, θ̃) =

 d

[
x

λ(δ + z′α)

]
[y − x′β1 − β2λ(δ + z′α)]

λ(δ + z′α)Φ−1(−δ − z′α) [d− Φ(δ + z′α)] z

 ,
where λ(·) = φ(·)/Φ(·) is the inverse Mill’s ratio. �

Example 2.2 (Models of potential outcomes and endogenous treatment)

Y1i = X ′iβ1 + ε1i

Y0i = X ′iβ0 + ε0i

, Di = 1[δ + Z ′iα ≥ νi],

Yi = DiY1i + (1−Di)Y0i,

(ε1i, ε0i, νi) ∼MVN(03,Σ10ν),

and we observe (Yi, Di, Xi, Zi). A Roy model (Heckman and Honore, 1990) is a special case of

this model of regime switching. This model is slightly more general than the model in Example

2.1, but similar in the aspects that this paper focuses upon. �

Example 2.3 (Threshold crossing models with a dummy endogenous variable)

Yi = 1[β1 + πDi − εi ≥ 0]

Di = 1[δ + αZi − νi ≥ 0]
,

(
εi

νi

)
∼ Fεiνi(εi, vi;β3).

where Zi ∈ {0, 1}. The model can be generalized by including common exogenous covariates

Xi presented in both equations and allowing the instrument Zi to take more than two val-

ues. We focus on this stylized version of the model in this paper only for simplicity. With
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Fεν(ε, ν;β3) = Φ(ε, ν;β3), a bivariate normal distribution, the model becomes the usual bivari-

ate probit model. The model with Fεν(ε, ν;β3) = C(Fε(ε), Fν(ν);β3), for C(·, ·;β3) in a class

of single parameter copulas, is considered in Han and Vytlacil (2015). Normalize Fv and Fε to

be uniform distributions for simplicity and let β2 ≡ β1 + π. Following Han and Vytlacil (2015),

we assume that α and δ are identified from the D equation. The remaining informative fitted

probabilities are

p11,0 = C(β2, δ;β3),

p11,1 = C(β2, δ + α;β3),

p10,0 = β1 − C(β1, δ;β3),

p10,1 = β1 − C(β1, δ + α;β3),

p01,0 = δ − C(β2, δ;β3),

p01,1 = δ + α− C(β2, δ + α;β3),

where pyd,z ≡ Pr[Y = y,D = d|Z = z]. Then, we have

0 = ζ̃∗ − g̃(θ̃) =



p11,0

p11,1

p10,0

p10,1

p01,0

p01,1


−



C(β2, δ;β3)

C(β2, δ + α;β3)

β1 − C(β1, δ;β3)

β1 − C(β1, δ + α;β3)

δ − C(β2, δ;β3)

δ + α− C(β2, δ + α;β3)


(2.4)

when θ̃ = θ̃∗, where ζ̃∗ and g̃(θ̃) are defined implicitly. �

Example 2.4 (Mixed proportional hazard models)

f(t|X,U ;α, β1, β2) = λ(t;α, β1)eβ
′
2XeU ,

where λ(t;α, β1) = β1(t+α)β1−1 is the baseline hazard. The form of λ(t;α, β1) is the translated

Weibull distribution introduced by Ridder and Woutersen (2003), motivated by the well-known

fact that with λ(t;α, β1) being the Weibull distribution, the information matrix is singular (Hahn

(1994)). Note that it is when α = 0 in the translated Weibull distribution. In this example, we

have

0 = G̃∗(θ̃) = E∗s(T,X,U ;α, β1, β2),
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where s(T,X,U ;α, β1, β2) is the efficient score of f(t|X,U ;α, β1, β2). �

In Example 2.1, with θ̃ = (α, δ, β1, β2), the Jacobian matrix satisfies (1.1):

J∗(θ̃) = E∗

 −β2DiXiλ1iZ
′
i −DiXiX

′
i −DiλiXi

DiYiλ1iZ
′
i −DiX

′
iβ1λ1iZ

′
i − 2β2Diλiλ1iZ

′
i −DiλiX

′
i −Diλ

2
i

Li(α, δ)ZiZ
′
i 0l×k 0l×1

 ,
where Φi ≡ Φ(δ + Z ′1iα), φi ≡ φ(δ + Z ′1iα), λi ≡ λ(δ + Z ′1iα), λ1i ≡ dλ(x)/dx|x=δ+Z′1iα

, and

Li(α, δ) ≡
{λ1i(Di − Φi)− λiφi} (1− Φi) + λiφi(Di − Φi)

(1− Φi)2
.

Note that rank(J∗(θ̃)) < dθ̃ when α = 0, since λi becomes a constant and Xi = (1, X ′1i)
′. Also,

in Example 2.3, note that 0 < rank(J∗(θ̃)) < dθ̃ when α = 0.2 This nonzero yet rank-deficient

Jacobian when α = 0 poses several challenges that make the existing asymptotic theory in the

literature that considers a zero rank Jacobian when α = 0 inapplicable here: (i) given (1.1), it is

not known which components among π̃ are not identified; (ii) key assumptions in the literature,

such as Assumption A in Andrews and Cheng (2012a), do not hold; (iii) typically, G∗(θ̃) or

J∗(θ̃) is nonlinear in α. In what follows, we develop a framework to tackle these challenges and

to obtain local asymptotic theory and inference procedures.

3 Identification and Lack of Identification

In this section, we formalize the class of problems we are interested in and introduce the main

technical setup used in this paper. This section and the next are presented based on (2.1).

The results with the special case (2.2) automatically follow without the asterisk sign in all the

expressions below. Recall γ = (θ̃, φ̃) with θ̃ = (α, δ, π̃). Let Γ and Θ̃ be the parameter spaces

of γ and θ̃, respectively. Let γ0 ≡ (θ̃0, φ0) and θ̃0 ≡ (α0, δ0, π̃0). Later we define a sequence of

parameters that converge to these points. Let G̃0(θ̃) ≡ G̃(θ̃; γ0).

Assumption 1 G̃0(θ̃) = 0 holds at θ̃ = θ̃0.

Assumption 2 The function G̃0 : Θ̃→ RdG̃ is continuously differentiable in θ̃ ∀γ0 ∈ Γ.

Assumption 3 θ̃0 is a regular point of the matrix ∂G̃0(θ̃)/∂π̃.

2The explicit expression of J∗(θ̃) can be found later in Section 6.
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That is, there exists an open neighborhood of θ̃0 in which ∂G̃0(θ̃)/∂π̃ has contant rank. The

next two assumptions define the role of α.

Assumption 4 When α0 6= 0, rank
(
∂G̃0(θ̃)/∂π̃

)
= dπ̃ at θ̃ = θ̃0 ∀γ0 = (θ̃0, φ̃0) ∈ Γ.

Assumption 4 is closely related to the identification condition for π̃. For local identification

of π̃, a local version of Assumption 4 is sufficient. For global identification, however, other

regularity conditions are also needed; see, e.g., the global inverse function theorem in Han and

Vytlacil (2015).

Assumption 5 When α0 = 0, rank
(
∂G̃0(θ̃)/∂π̃

)
= r < dπ̃ at θ̃ = θ̃0 = (0, δ0, π̃0) ∀γ0 =

(θ̃0, φ̃0) ∈ Γ.

By allowing r > 0, Assumption 5 presents the key aspect of the problem of this paper: a

general form of deficient rank Jacobian. This condition yields the lack of identification of π̃

in the sense of the lack of first-order identification by Sargan (1983). We follow this lack of

identification concept throughout the paper. This concept is also used in relating the lack of

identification with a criterion function in estimation; see, e.g., Theorem 5.2 below.

When α0 = 0, not all the parameters among π̃ are identified. Except in the special case

of zero rank, in the case of a general deficient rank Jacobian, we typically do not know which

parameters among π̃ are identified and which are not. Specifically, this happens when the

Jacobian with general deficient rank does not have a simple form with zero columns. This

motivates us to proceed as follows.

Assumption 6 For r-dimensional subvectors π1 ∈ Π1 of π̃ = (π1, π0) and G1 of G̃ = (G1′, G0′)′,

it satisfies that

rank(∂G1
0(θ̃)/∂π1) = r (3.1)

at θ̃ = θ̃0 = (0, δ0, π̃0) ∀γ̃0 = (θ̃0, φ0) ∈ Γ̃. When dδ + dπ0 < r, there exist a reduced-form

parameter ζ1 ∈ Z1 with dζ1 ≥ r − (dδ + dπ0) such that

0 = G1
0(θ̃) = G̃1

0(θ̃, ζ1
0 ). (3.2)

Note that the existence of ζ1 is not necessary. When it is, ζ1
0 is an element of φ̃0 in γ0 =

(θ̃0, φ̃0). Note that Examples 2.1–2.3 satisfy Assumption 6; see Section 6. This assumption

trivially holds for cases described by (2.2), i.e., when G̃∗(θ̃) = ζ̃∗ − g̃(θ̃). In this case, ζ1 in

G̃1(θ̃, ζ1) = ζ1 − g1(θ̃) is a r-dimensional subvector of ζ̃ = (ζ1, ζ0). Note that r < dζ̃ since

r < dπ̃. The following lemma is crucial to the main technical step of our paper. For a given
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ε > 0, define a local parameter space Θ̃ε ≡
{
θ̃ ∈ Θ̃ : ‖θ̃ − θ̃0‖ < ε

}
around the nonidentification

region θ̃0 ≡ (α0, δ0, π̃0) = (0, δ0, π̃0), and Z1
ε ≡

{
ζ1 ∈ Z1 :

∥∥ζ1 − ζ1
0

∥∥ < ε
}

. Also, define χ to be

either χ ≡ (δ, π0) or χ ≡ (δ, ζ1, π0) in X ≡
{
χ : θ̃ ∈ Θ̃, ζ1 ∈ Z1

}
.

Lemma 3.1 Under Assumptions 1–6, the following holds ∀γ0 = (θ̃0, φ̃0) ∈ Γ: There exist an

open neighborhood Xε ≡
{
χ : θ̃ ∈ Θ̃ε, ζ

1 ∈ Z1
ε

}
for some ε > 0 and a continuously differentiable

implicit function h1 : Xε → Π1 such that

0 = G̃1
0

(
0, h1

0(χ), χ
)

(3.3)

∀χ ∈ Xε, where h1
0(χ) ≡ h1(χ; γ0).

Proof. Given Assumption 6, the result follows by the implicit function theorem.

Assumption 7 The derivative ∂h1
0(χ)/∂χ has full row rank ∀χ ∈ Xε.

This assumption holds when dζ1 = r and ∂G̃1
0/∂ζ

1 has full rank, which agrees with the fact

that ζ1 is assumed to be a reduced-form parameter.

When α0 = 0, by (3.1), there exists a matrix M
(dG̃−r)×r

such that M∂G1∗/∂π̃ = ∂G0∗/∂π̃.

This implication is useful in proving Theorem 5.2 below. It is also useful for dealing with the

singularity of the asymptotic variance of the estimator due to weak identification; see below.

Our goal is to separate the parameters in π̃ that are not identified when α = 0, presumably

of dimension dπ̃ − r, and eventually use a criterion function that does not depend on those

parameters when α = 0. The partition π̃ = (π1, π0) and the inverse function h1 enable us to

do so. More specifically, Lemma 3.1 shows “to what extent” π̃ is identified when α = 0: the

parameters of the model are identified up to π0 when α = 0.

4 Transformation

Define θ ≡ (α, ζ, π) in its parameter space Θ where (a) ζ = (δ, ζ1) and π = π0 if r 6= 0 and

χ = (δ, ζ1, π0), (b) ζ = δ and π = π0 if r 6= 0 and χ = (δ, π0), and (c) ζ = δ and π = π̃ if

r = 0. Note that dθ = dθ̃. Define Θε ≡
{
θ ∈ Θ : θ̃ ∈ Θ̃ε

}
. Also note that γ = (θ̃, φ̃) can be

rearranged as γ = (θ, φ), where φ is the part of the distribution of the observed data which is

not determined by θ. Under Assumptions 1–5, we have the following result:

Theorem 4.1 (Transformation) Under Assumptions 1–6, ∀γ∗ ∈ Γ, there exists a function

h∗ : Θ̃ε → Θε such that

θ̃ = h(θ; γ∗) ≡ h∗(θ). (4.1)
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Proof. When r 6= 0, the equation (4.1) is given by

(α, δ, π̃) = (α, δ, h1∗(δ, ζ1, π0), π0) = (α, ζ, h1∗(ζ, π), π) = h∗(α, ζ, π), (4.2)

where h1∗(δ, π0) ≡ h1(δ, π0; γ∗) and the second equality holds by the simple change of notation

in (a) above. The case (b) follows analogously. When r = 0, (α, δ, π̃) = (α, ζ, π) by the change

of notation in (c) above.

Theorem 4.1 defines a mapping between the transformed parameter θ = (α, ζ, π) and the

original parameter θ̃ = (α, δ, π̃) within the local parameter space. Note that the transformation

may depend on the true value γ∗. When h does not depend on γ∗, as in the case (2.2), this

transformation is nothing but the reparametrization of θ̃ into θ.

Define

G(θ; γ) = G̃(h∗(θ); γ), (4.3)

g(θ) = g̃(h(θ)), (4.4)

where each equation corresponds to the terms in (2.1) and (2.2), respectively. From the previous

results, one can show that the Jacobian of G(θ; γ) when α = 0 has a simpler expression with zero

columns than the Jacobian of G̃(θ̃; γ); see Remark 5.3 for details. This simplification illustrates

why we introduce the transformation.

5 Criterion Functions

We assume that the estimators of θ̃ and θ minimize a criterion function. In order to define

criterion functions, we define the sample counterparts ¯̃G(θ̃) and Ḡ1(θ̃) of G̃∗(θ̃) and G̃1∗(θ̃),

whose “limits” are G̃0(θ̃) and G̃1
0(θ̃), respectively.

Assumption 8 ¯̃G(θ̃) is continuously differentiable and rank
(
∂ ¯̃G(θ̃)/∂π̃

)
= r < dπ̃ a.s. at

θ̃ = θ̃0 = (0, δ0, π̃0).

This is a sample version of Assumptions 2 and 5. This condition holds for Examples 2.1 and

2.2 and trivially for Example 2.3 as ¯̃G(θ̃) =
ˆ̃
ζ − g̃(θ̃). The assumption on the differentiability

of ¯̃G(θ̃) is stronger than, e.g., Assumption GMM2 in Andrews and Cheng (2014a). Then by

Assumption 6, ¯̃G1 is implicitly defined in

0 = Ḡ1(0, δ, π̃) = ¯̃G1(0, δ, π̃, ζ̂1), (5.1)
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where the limit of ζ̂1 is ζ1
0 . Given Assumption 8, by the sample analogue of (3.3) in Lemma 3.1,

there exists a continuously differentiable function ĥ1 : Xε → Π1 such that

0 = ¯̃G1(0, ĥ1(χ), χ) (5.2)

∀χ ∈ Xε.3 Then the sample analogue ĥ(θ) of the transformation h∗(θ) is defined accordingly. In

the special case (2.2), ¯̃G(θ̃) =
ˆ̃
ζ− g̃(θ̃) and h does not depend on γ∗ so that ĥ(θ) = h∗(θ) = h(θ)

trivially. Lastly, the sample counterpart of G∗(θ) = G(θ; γ∗) is defined as

Ḡ(θ) = ¯̃G(ĥ(θ)). (5.3)

Let Q̃n(θ̃) be the criterion function of the original parameter θ̃. Given Q̃n(θ̃), we define the

criterion function of the transformed parameter θ as

Qn(θ) ≡ Q̃n(ĥ(θ)). (5.4)

Assumption 9 Q̃n(θ̃) is a function of θ̃ only through ¯̃G(θ̃).

By (5.4), Assumption 9 implies that the transformed criterion function Qn(θ) is a function

of θ only through Ḡ(θ). We show that Assumption 9 is naturally satisfied when we construct

GMM/MD or ML criterion function given (2.1) or (2.2). Note that models that generate likeli-

hoods typically involve (2.2) as we see in the introduction.

(a) GMM/MD criterion functions: The original function Q̃n : Θ̃→ R is defined as

Q̃n(θ̃) =
∥∥∥An ( ¯̃G(θ̃)

)∥∥∥2
,

where An is a weight matrix, and the transformed function around the nonidentification region

Qn : Θε → R is defined as

Qn(θ) = Q̃n(ĥ(θ)) =
∥∥An (Ḡ(θ)

)∥∥2
. (5.5)

In the special case (2.2) which typically arises in a MD framework, h no longer depends on the

true parameter γ̃∗ and

Qn(θ) = Q̃n(h(θ)) =
∥∥∥An(

ˆ̃
ζ − ḡ(θ))

∥∥∥2
.

3Note that under Assumption 5, 0 = G1
0(θ̃) at θ̃ = θ̃0 = (0, δ0, π̃0) can be seen as a moment condition where

an r-dimensional parameter π1 is exactly identified, and this is one way to motivate (5.1).

12



(b) ML criterion functions: Given (2.2), assume that the distribution of the data depends

on θ̃ only through ζ̃ (Rothenberg (1971)), that is, there exists a function f †(w; ζ̃) such that

f(w; θ̃) = f †(w; g̃(θ̃)) = f †(w; ζ̃). (5.6)

Then, the original function Q̃n : Θ̃→ R is defined as

Q̃n(θ̃) = − 1

n

n∑
i=1

ln f †
(
Wi, g̃(θ̃)

)
,

where f † satisfies (5.6), and the transformed function Qn : Θε → R is defined as

Qn(θ) = − 1

n

n∑
i=1

ln f † (Wi, g(θ)) . (5.7)

Remark 5.1 Given the existence of f †(w; ζ̃) in the ML framework, the setting of this paper can

be characterized in terms of the information matrix. Let I(θ̃) be the dθ̃ × dθ̃ information matrix

I(θ̃) ≡ E
[
∂ log f

∂θ̃

∂ log f

∂θ̃′

]
.

Then, the general form of singularity of the Jacobian (0 ≤ rank(∂g̃(θ̃0)/∂θ̃) < dθ̃) can be

characterized as the general form of singularity of the information matrix (0 ≤ rank(I(θ̃0)) <

dθ̃), since

∂ log f(w; θ̃)

∂θ̃
=
∂ log f †(w; g̃(θ̃))

∂ζ̃ ′
∂g̃(θ̃)

∂θ̃

and I†(ζ̃) ≡ E
(
∂ log f †/∂ζ̃

)(
∂ log f †/∂ζ̃ ′

)
has full rank.

When r > 0, the original criterion function depends on π̃ when α = 0. Only when r = 0 is

Q̃(0, δ, π̃) a constant function of π̃. Under the new set of parameters θ = (α, ζ, π), however, we

show that the transformed criterion function does not depend on π when α = 0:

Theorem 5.2 Under Assumptions 1–9, Qn(θ) is a constant function of π when α = 0 ∀θ =

(0, ζ, π) ∈ Θε.

Proof. We prove the case of χ = (δ, ζ1, π0). By Assumption 9, it suffices to consider

¯̃G(α, δ, ĥ1(ζ, π), π) =

[
Ḡ1(α, δ, ĥ1(ζ, π), π)

Ḡ0(α, δ, ĥ1(ζ, π), π)

]
.
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When α = 0,

0 = Ḡ1
(

0, δ, ĥ1(ζ, π), π
)
,

which is a constant function of π. Now we show that, when α = 0, Ḡ0
(
α, δ, ĥ1(ζ, π), π

)
is a

constant function of π, or

∂Ḡ0
(

0, δ, ĥ1(ζ, π), π
)

∂π
= 0.

By Assumption 8, for some (dG̃ − r) × r matrix M , M∂Ḡ1/∂π̃ = ∂Ḡ0/∂π̃ when α = 0 around

the neighborhood by Assumption 3, and therefore

∂Ḡ0
(

0, δ, ĥ1(ζ, π), π
)

∂π
=
∂Ḡ0

∂π1

∂ĥ1

∂π
+
∂Ḡ0

∂π

= −∂Ḡ
0

∂π1

[
∂Ḡ1

∂π1

]−1
∂Ḡ1

∂π
+
∂Ḡ0

∂π

= −M∂Ḡ1

∂π1

[
∂Ḡ1

∂π1

]−1
∂Ḡ1

∂π
+M

∂Ḡ1

∂π

= 0,

where the second equality follows from differentiating (5.2). When h does not depend on γ∗,

the same proof goes through after ĥ1 is replaced by h1.

Also note that by a similar proof

∂Ḡ0
(

0, δ, ĥ1(ζ, π), π
)

∂ζ
=
∂Ḡ0

∂π1

∂ĥ1

∂ζ
+

[
∂Ḡ0

∂δ

0r

]

=
∂Ḡ0

∂π1

[
∂Ḡ1

∂π1

]−1
[
−∂Ḡ1

∂δ

Ir

]
+

[
∂Ḡ0

∂δ

0r

]

= M
∂Ḡ1

∂π1

[
∂Ḡ1

∂π1

]−1
[
−∂Ḡ1

∂δ

Ir

]
+

[
M ∂Ḡ1

∂δ

0r

]

=

[
0

M

]
,

which implies that Qn(θ) is a proper function of ζ even when α = 0.
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In sum, after the transformation, among the components of θ = (α, ζ, π), α determines the

identification status of θ, ζ is the parameter whose identification is not affected by the value of

α, and π is the parameter which is not identified and does not appear in the criterion function

when α = 0. This transformation facilitates our analysis in two ways: (i) it distinguishes the

parameters that are strongly identified from the parameters that are weakly identified when α

is close to zero; (ii) it yields criterion functions that do not depend on the weakly identified

parameters when α = 0. When h does not depend on γ∗, Theorem 5.2 provides the groundwork

for asymptotic theory, just as Assumption A does in Andrews and Cheng (2012a). When h

depends on γ∗, however, the fact that Qn(θ) contains the sampling error of ĥ complicates the

asymptotic theory.

Here we formally define the estimators of θ̃ and θ. First, for the transformed parameter θ, it

is useful to define the estimator in two steps to facilitate the asymptotic theory. This is because π

has different asymptotic behavior compared to ψ = (α, ζ), which can be anticipated by the results

of Theorem 5.2. Define a concentrated estimator ψ̂n(π) ∈ Ψ(π) ≡ {ψ : θ ∈ Θ for some π ∈ Π}
of ψ for a given π ∈ Π ≡ {π : θ ∈ Θ} as

Qcn(π) ≡ Qn(ψ̂n(π), π) = inf
ψ∈Ψ(π)

Qn(ψ, π) + o(n−1), (5.8)

and an estimator π̂n ∈ Π of π as

Qcn(π̂n) = inf
π∈Π

Qcn(π) + o(n−1). (5.9)

Then θ̂n ≡
(
ψ̂n, π̂n

)
where ψ̂n ≡ ψ̂n(π̂n).

Assumption 10 θ̂n also satisfies Qn(θ̂n) = infθ∈Θε Qn(θ) + o(n−1).

First note that θ̂n satisfies

Qn(θ̂n) = inf
π∈Π

inf
ψ∈Ψ(π)

Qn(ψ, π) + o(n−1) = inf
θ∈Θ

Qn(θ) + o(n−1).

Assumption 10 assumes that Qn(θ) reaches its infimum within the nonidentification region

Θε. This setting is relevant in the weak and semi-strong identification cases defined below.

Lastly, we show that ĥ(θ̂n) can be seen as the estimator of the original parameter θ̃ around the

nonidentification region. Let
ˆ̃
θn ≡ ĥ(θ̂n).
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Lemma 5.1 Under Assumptions 1–8 and 10,
ˆ̃
θn satisfies

Q̃n(
ˆ̃
θn) = inf

θ̃∈ĥ(Θε)
Q̃n(θ̃) + o(n−1). (5.10)

Proof. The result follows by

inf
θ̃∈ĥ(Θε)

Q̃n(θ̃) = inf
{
Q̃n(θ̃) : θ̃ ∈ ĥ(Θε)

}
= inf

{
Q̃n(ĥ(θ)) : θ ∈ Θε

}
= inf {Qn(θ) : θ ∈ Θε}

= inf
θ∈Θε

Qn(θ)

= Qn(θ̂n) + o(n−1)

= Q̃n(ĥ(θ̂n)) + o(n−1)

Note that we define the estimator
ˆ̃
θ of the original parameter θ̃ on a random set ĥ(Θε).

When h is known, then ĥ = h, so ĥ(Θε) = Θ̃ε. Henceforth, for a function f(x), fx1(x) denotes

∂f(x)/∂x1, where x1 is a subvector of x.

Remark 5.3 Since the derivative hθ has full rank, the rank deficiency of G̃θ̃ implies that

Gθ(α, ζ, β; γ0) also has deficient rank when α = 0. In fact, note that with h1
0(ζ, π) ≡ h1(ζ, π; γ0),

Gπ(α, ζ, π; γ0) =
∂G̃(α, δ, h1

0(ζ, π), π; γ0)

∂π
=

[
∂G1

∂π1

∂h10
∂π + ∂G1

∂π
∂G0

∂π1

∂h10
∂π + ∂G0

∂π

]

becomes a zero matrix when α = 0. This is because, when α = 0, ∂G1

∂π1

∂h10
∂π + ∂G1

∂π = 0 and hence

∂G0

∂π1

∂h10
∂π + ∂G0

∂π = M
(
∂G1

∂π1

∂h10
∂π + ∂G1

∂π

)
= 0 since M∂G1∗/∂π̃ = ∂G0∗/∂π̃. The transformation we

employ helps establish a Jacobian matrix Gθ that has a simpler form of deficient rank than G̃θ̃,

which is useful to the following step.

Remark 5.4 The rank deficiency of Gθ(0, ζ, β; γ0) leads to a singular asymptotic variance ma-

trix of the estimators. Therefore, we treat α separately in the derivation of asymptotic theory

below. Given the result above, consider the following element-wise mean value expansion around
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α = 0:

[Gπ(α, ζ, π; γ0)]jk =

[
∂G̃(α, δ, h1

0(ζ, π), π; γ0)

∂π

]
jk

=
∂

∂α′

[
∂G̃(α†, δ, h1

0(ζ, π), π; γ0)

∂π

]
jk

α (5.11)

for dψ ≤ j ≤ dζ̃ and dψ ≤ k ≤ dθ, or

vec (Gπ(α, ζ, π; γ0)) =
∂

∂α′
vec

(
Gπ(α†, ζ, π; γ0)

)
α

or

Gπ(θ; γ0) = Dα′Gπ(α†, ζ, π; γ0) ◦ α, (5.12)

where Dα′ [·] is an element-wise matrix derivative and ◦ is multiplication according to (5.11),

and α† lies between 0 and α which is not necessarily identical across elements. Then by (5.12),

one can rewrite the Jacobian as

Gθ(θ; γ0) =
[
Gψ(θ; γ0) : Dα′Gπ(θ†; γ0) ◦ α

]
where θ† ≡ (α†, ζ, π).

6 Examples

6.1 Sample selection models and models of potential outcomes

We continue to discuss Examples 2.1 and 2.2. Since the two examples share similar features of

sample selection, we focus our attention on Example 2.1. Let π̃ = β̃ = (β1, β2) and π1 = β1.

Given G̃∗(θ̃) = E∗ϕ(Wi, θ̃) in (2.3), the Jacobian relevant to our discussions in Sections 3–5 is

G̃∗π̃ = −E∗

 DiXiX
′
i DiλiXi

DiλiX
′
i Diλ

2
i

0l×k 0l×1

 .
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When α = 0, we have rank(G̃∗π̃) = dπ̃ − 1 = r = k since

G̃∗π̃(0, δ, π̃) = −Eγ̃∗

 DiXiX
′
i λ(δ)DiXi

λ(δ)DiX
′
i λ2(δ)Di

0l×k 0l×1

 ,
and the (k + 1)-th row is a scalar multiple of the first row since Xi = (1, X ′1i)

′. Given

G∗1(θ̃) = E∗
[
DiXiYi −DiXiX

′
iβ1 − β2DiλiXi

]
,

when α = 0, note that 0 = G∗1(0, δ, π̃) is equivalent to

0k×1 = E∗
[
DiXiYi −DiXiX

′
iβ1 − β2λ(δ)DiXi

]
≡ Q∗DXY −Q∗DXXβ1 − λ(δ)β2Q

∗
DX .

Observe that Assumptions 6 and 7 hold with ζ1∗ = Q∗DXY . Also, rank
(
G∗1π1(0, δ, π̃)

)
= r, and

when α = 0, MG∗1π̃ = G∗0π̃ with M being a (l+ 1)×k zero matrix with the (1×1) element being

λ(δ). In this example, the function h1∗ has a closed form solution:

h1∗(ζ, β2) = h1∗(δ, ζ1, β2) = Q∗−1
DXX

(
ζ1 − λ(δ)β2Q

∗
DX

)
.
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6.2 Threshold crossing models with dummy endogenous variable

We now continue to discuss Example 2.3. Let π̃ = β̃ = (β1, β2, β3) and π1 = (β1, β2). Given

G̃∗(θ̃) = ζ̃∗ − g̃(θ̃) from the expression in (2.4), the relevant Jacobian is

G̃∗π̃ = −g̃π̃ = −



0 C1 (β2, δ;β3) C3 (β2, δ;β3)

0 C1 (β2, δ + α;β3) C3 (β2, δ + α;β3)

1− C1 (β1, δ;β3) 0 −C3 (β1, δ;β3)

1− C1 (β1, δ + α;β3) 0 −C3 (β1, δ + α;β3)

0 −C1 (β2, δ;β3) −C3 (β2, δ;β3)

0 −C1 (β2, δ + α;β3) −C3 (β2, δ + α;β3)



.

When α = 0, we have rank(G̃∗π̃) = dπ̃− 1 = r = 2, since there are only two linearly independent

rows in the following Jacobian matrix:

g̃π̃ =



0 C1 (β2, δ;β3) C3 (β2, δ;β3)

0 C1 (β2, δ;β3) C3 (β2, δ;β3)

1− C1 (β1, δ;β3) 0 −C3 (β1, δ;β3)

1− C1 (β1, δ;β3) 0 −C3 (β1, δ;β3)

0 −C1 (β2, δ;β3) −C3 (β2, δ;β3)

0 −C1 (β2, δ;β3) −C3 (β2, δ;β3)



.
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The deficient rank of the Jacobian can be easily seen by the fact that when α = 0, the fitted

probabilities are reduced to

p11,0 = p11,1 = C(β2, δ;β3),

p10,0 = p10,1 = β1 − C(β1, δ;β3),

p01,0 = p01,1 = δ − C(β2, δ;β3),

where the number of equations is less than the number of unknowns. Observe that Assumptions

6 and 7 trivially hold with 0 = ζ1∗ − g1(0, δ, π̃), i.e.,

0 =

 p11,0

p10,0

p01,0

−
 C(β2, δ;β3)

β1 − C(β1, δ;β3)

δ − C(β2, δ;β3)

 ,
and therefore rank

(
g1
π1(0, δ, π̃)

)
= r. Also when α = 0, Mg1

π̃ = ∂g0
π̃ where M = I3. In this

example, the function h1∗ does not have a closed form solution unless we introduce a copula of

a simple form.

6.3 Mixed proportional hazard models

Lastly, we discuss Example 2.4. Let π̃ = (β1, β2). When α = 0, we have rank(G̃∗π̃) = 1 = r since

G̃∗π̃(0, π̃) = E∗(1− SE∗[eU |S])

[
β′2
β2
1
X − 1

β1
X ′

0dβ2×1 0dβ2×dβ2

]
,

where

S = Λ(T, β∗1)eβ
∗′
2 X

with Λ(t, β1) =
´ t

0 λ(s, β1)ds. Also when α = 0, MG∗1π̃ = G∗0π̃ with M being a dβ2 × 1 zero

matrix. Note that G1∗(0, π̃) is linear in β2. In this example, dπ0 > dπ1 , and we can verify that

Assumptions 6 and 7 hold without the existence of ζ1.

7 Drifting Sequences of Distributions

We formally characterize a local-to-deficient rank Jacobian by modeling the α parameter as

local-to-zero. In doing so, we may fully characterize different strengths of identification, namely,
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strong, semi-strong, and weak. Ultimately, we derive asymptotic theory under parameters with

different strengths of identification in order to conduct uniformly valid inference robust to iden-

tification strength.

Define sets of sequences of parameters {γn} as follows:

Γ(γ0) ≡ {{γn ∈ Γ : n ≥ 1} : γn → γ0 ∈ Γ} ,

Γ(γ0, 0, a) ≡
{
{γn} ∈ Γ(γ0) : α0 = 0 and n1/2αn → a ∈ Rdα∞

}
,

Γ(γ0,∞, ω0) ≡
{
{γn} ∈ Γ(γ0) : n1/2 ‖αn‖ → ∞ and

αn
‖αn‖

→ ω0 ∈ Rdα
}
,

where γ0 ≡ (α0, ζ0, π0, φ0) and γn ≡ (αn, ζn, πn, φn), and R∞ ≡ R ∪ {±∞}. When ‖a‖ < ∞,

{γn} ∈ Γ(γ0, 0, a) are weak identification sequences, otherwise, when ‖a‖ =∞, they characterize

semi-strong identification. Sequences {γn} ∈ Γ(γ0,∞, ω0) characterize semi-strong identification

when αn → 0, otherwise, when limn→∞ αn 6= 0, they are strong identification sequences.

8 Asymptotic Theory

The asymptotic theory is based on

Qn(θ) = (Q̃n ◦ ĥ)(θ).

We proceed with generic sample and population criterion functions Qn(θ) and Q(θ). They can

be GMM, MD, or ML criterion functions. To start the analysis, we make use of Theorem 3.1

of Andrews and Cheng (2012a) to obtain the limit theory for the estimators of θ under weak

identification and subsequently obtain the weak identification limit theory for the estimators of

the original structural parameter of interest θ̃.

Proposition 8.1 Suppose Assumptions 1–8 and Assumptions B1-B3 and C1-C6 of Andrews

and Cheng (2012a), adapted to the θ and Qn(θ) of this paper, hold. Under parameter sequences

{γn} ∈ Γ(γ0, 0, a) with ‖a‖ <∞,( √
n(ψ̂n − ψn)

π̂n

)
d−→

(
τ(π∗(γ0, a); γ0, a)

π∗(γ0, a)

)
,

where

π∗(γ0, a) ≡ arg min
π∈Π
−1

2
(G̃(π; γ0) +K(π; γ0)a)′H−1(π; γ0)(G̃(π; γ0) +K(π; γ0)a),
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τ(π; γ0, a) ≡ −H−1(π; γ0)(G̃(π; γ0) +K(π; γ0)a)− (a, 0dζ )

with (a, 0dζ ) ∈ Rdψ , π∗(γ0, a) being a random vector and {τ(π; γ0, a) : π ∈ Π} being a Gaussian

process. The underlying functions H(π; γ0) and K(π; γ0) and Gaussian process G̃(π, γ0) are

defined in Assumptions C4(i), C5(ii) and C3 of Andrews and Cheng (2012a), respectively.

Proof: By Theorem 5.2, Assumptions 1–9 imply Assumption A of Andrews and Cheng

(2012a). The remaining conditions of Theorem 3.1 of Andrews and Cheng (2012a) are satisfied

by direct assumption. �

Since the parameter of interest is given by θ̃ = h∗(θ), Proposition 8.1 is not directly useful

for obtaining distributional approximations for the estimator
ˆ̃
θn of the parameter of interest.

However, Lemma 5.1 provides us with sufficient conditions under which
ˆ̃
θn = ĥ(θ̂n). In con-

junction with Proposition 8.1, we can use this representation to obtain the weak identification

limit theory for
ˆ̃
θn. Recall from Section 5 that in the special case (2.2), the function h∗ does not

depend upon γ∗, and can therefore be written simply as h and does not need to be estimated.

The asymptotic analysis for the distribution of
ˆ̃
θn is simpler in this special case. Moreover,

the analysis for the case in which h∗ depends upon γ∗ builds upon the results obtained for this

h∗ = h case. We begin this section by analyzing the limiting distribution of
ˆ̃
θn in the former

case and move to the latter case in a subsequent subsection. Using the transformed parameter

space, redefine the space Xε ≡ {(ζ, π) : θ = (α, ζ, π) ∈ Θε} for some ε > 0.

8.1 Known Transformation

In this subsection, we assume that r 6= 0 and
ˆ̃
θn = (α̂n, ζ̂n, π̂

1
n, π̂n) = (α̂n, ζ̂n, h

1(ζ̂n, π̂n), π̂n) ≡
h(θ̂n), where h1 : Xε → Π1 (and therefore h(·)) is a known, nonrandom function. If we can

establish the asymptotic distribution of π̂1
n = h1(ζ̂n, π̂n) under {γn} ∈ Γ(γ0, 0, a), then the joint

convergence in distribution of
ˆ̃
θn follows from the joint convergence of Proposition 8.1.

We wish to obtain the asymptotic distribution of π̂1
n that is a function of parameters with

different rates of convergence. To do so, we make use of a “rotation” technique that has been

used in various similar contexts (e.g., Sargan, 1983; Phillips, 1989; Antoine and Renault, 2009,

2012; Andrews and Cheng, 2014a). By defining a certain rotation of the parameters π̂1
n, we are

able to characterize which “directions” of π̂1
n converge at different rates and to different limiting

processes. This is conducive to subsequent analysis on inference. To proceed, let h1
χ(χ) ≡

[h1
ζ(χ) : h1

π(χ)] according to a conformable partition. For χ ∈ Xε, let A(χ) ≡ [A1(χ)′ : A2(χ)′]′

be an orthogonal dπ1 ×dπ1 matrix such that A1(χ) is a (dπ1 −d∗π)×dπ1 matrix whose rows span

the null space of h1
π(χ)′ and A2(χ) is a d∗π × dπ1 matrix whose rows span the column space of
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h1
π(χ), where d∗π ≡ rank(h1

π(χ)) for χ ∈ Xε. Define

ηn(χ) ≡

{
n1/2A1(χ)

{
h1(ζn, π)− h1(ζn, πn)

}
if d∗π < dπ1

0 if d∗π = dπ1 .

We impose the following analog of Assumption R2 of Andrews and Cheng (2014a):

Assumption 11 ηn(χ̂n)
p−→ 0 under {γn} ∈ Γ(γ0, 0, a) for all a ∈ Rdα.

Now we can state the following Corollary to Theorem 5.1 of Andrews and Cheng (2014a)

which establishes the asymptotic distribution of
ˆ̃
θn under weak identification sequences:

Proposition 8.2 Suppose Assumptions 1–11 and Assumptions B1–B3 and C1–C6 of Andrews

and Cheng (2012a), adapted to the θ and Qn(θ) of this paper, hold. Then under {γn} ∈ Γ(γ0, 0, a)

with ‖a‖ <∞,

√
n(α̂n − αn)
√
n(δ̂n − δn)

√
nA1(χ̂n)(π̂1

n − π1
n)

A2(χ̂n)(π̂1
n − π1

n)

π̂n


d−→


τα(π∗0,a; γ0, a)

τ δ(π∗0,a; γ0, a)

A1(ζ0, π
∗
0,a)h

1
ζ(ζ0, π

∗
0,a)τ

ζ(π∗0,a; γ0, a)

A2(ζ0, π
∗
0,a)

{
h1(ζ0, π

∗
0,a)− h1(ζ0, π0)

}
π∗0,a

 ,

where π∗0,a abbreviates π∗(γ0, a) and τα, τ δ and τ ζ denote the components of τ corresponding to

α, δ and ζ.

Proof: First, note that Lemma 3.1 provides that h1 is continuously differentiable and As-

sumption 7 provides that h1
χ(χ) is full row rank dπ1 for all χ ∈ Xε. This implies that Assumption

R1(i)-(ii) of Andrews and Cheng (2014a) holds, where r(θ) = h1(χ) here. Next, note that by

differentiating (3.3) in Lemma 3.1 we obtain

h1
π = −

(
∂G1

∂π1

)−1
∂G1

∂π

for χ ∈ Xε and the analog of Assumption R1(iii) of Andrews and Cheng (2014a) holds in our

context as well. Hence, using similar arguments to those in the proof of Theorem 5.1 of Andrews

and Cheng (2014a), note that

h1(χ̂n)− h1(χn) = h1(ζ̂n, π̂n)− h1(ζn, π̂n) + h1(ζn, π̂n)− h1(ζn, πn)

= h1
ζ(χ̂n)(ζ̂n − ζn) + (h1(ζn, π̂n)− h1(ζn, πn)) + op(n

−1/2)
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by Proposition 8.1 and the continuous differentiability of h1. Thus,( √
nA1(χ̂n)

{
h1(χ̂n)− h1(χn)

}
A2(χ̂n)

{
h1(χ̂n)− h1(χn)

} )
=

( √
nA1(χ̂n)h1

ζ(χ̂n)(ζ̂n − ζn)

A2(χ̂n)
{
h1(ζn, π̂n)− h1(ζn, πn)

} )

+

( √
nA1(χ̂n)

{
h1(ζ1

n, π̂n)− h1(ζ1
n, πn)

}
A2(χ̂n)h1

ζ(χ̂n)(ζ̂n − ζn)

)
+ op(1)

=

(
A1(χ̂n)h1

ζ(χ̂n)
√
n(ζ̂n − ζn)

A2(χ̂n)
{
h1(ζn, π̂n)− h1(ζn, πn)

} )+ op(1)

d−→

(
A1(ζ0, π

∗(γ0, a))h1
ζ(ζ0, π

∗(γ0, a))τ ζ(π∗(γ0, a); γ0, a)

A2(ζ0, π
∗(γ0, a))

{
h1(ζ0, π

∗(γ0, a))− h1(ζ0, π0)
} )

,

where the second equality follows from Assumption 11 and Proposition 8.1 and the weak con-

vergence follows from Proposition 8.1, the continuous differentiability of h1 and the CMT (see

11.13 Andrews and Cheng, 2014b). Lemma 5.1 then implies( √
nA1(χ̂n)(π̂1

n − π1
n)

A2(χ̂n)(π̂1
n − π1

n)

)
d−→

(
A1(ζ0, π

∗(γ0, a))h1
ζ(ζ0, π

∗(γ0, a))τ ζ(π∗(γ0, a); γ0, a)

A2(ζ0, π
∗(γ0, a))

{
h1(ζ0, π

∗(γ0, a))− h1(ζ0, π0)
} )

and the marginal convergence results for α̂n, δ̂n and π̂n follow directly from Proposition 8.1.

Finally, note that α̂n, δ̂n, π̂n, A1(χ̂n), A2(χ̂n) and π̂1
n are all continuous functions of ψ̂(π̂n)

and π̂n in Proposition 8.1 so that, with the CMT, joint convergence also follows from that

proposition. �

Due to the rotation by A1(χ̂n) and A2(χ̂n), Proposition 8.2 does not directly express the

limiting distribution of π̂1
n. However, this is easily obtained as a corollary to the proposition.

Let A(χ)−1 = [A1(χ) : A2(χ)], which forms a conformable partition such that A1(χ) is a

dπ1 × (dπ1 − d∗π) matrix and A2(χ) is a dπ1 × d∗π matrix.

Corollary 8.1 Under the assumptions of Proposition 8.2 and {γn} ∈ Γ(γ0, 0, a) with ‖a‖ <∞,
√
n(α̂n − αn)
√
n(δ̂n − δn)

π̂1
n

π̂n

 d−→


τα(π∗0,a; γ0, a)

τ δ(π∗0,a; γ0, a)

π1∗
0,a

π∗0,a

 ,

where

π1∗
0,a = π1

0 +A2(ζ0, π
∗
0,a)A2(ζ0, π

∗
0,a)(h

1(ζ0, π
∗
0,a)− h1(ζ0, π0)).
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Proof: Note that by Proposition 8.2,

(π̂1
n − π1

n) = A−1(χ̂n)A(χ̂n)(π̂1
n − π1

n)

= A1(χ̂n)A1(χ̂n)(π̂1
n − π1

n) +A2(χ̂n)A2(χ̂n)(π̂1
n − π1

n)

d−→ A2(ζ0, π
∗
0,a)A2(ζ0, π

∗
0,a)(h

1(ζ0, π
∗
0,a)− h1(ζ0, π0))

since A1(χ̂n)(π̂1
n − π1

n) = Op(n
−1/2) and A1(χ̂n) = Op(1). The joint convergence follows imme-

diately from Proposition 8.2. �

Remark 8.2 Though π1∗
0,a is the limiting random variable for π̂1

n in Corollary 8.1, including the

asymptotic counterpart to the Op(n
−1/2) term A1(χ̂n)A1(χ̂n)(π̂1

n − π1
n) should provide a better

approximation to the finite sample distribution of π̂1
n. That is, the distributional approximation

for π̂1
n by

π1∗
0,a + n−1/2A1(ζ0, π

∗
0,a)A1(ζ0, π

∗
0,a)h

1
ζ(ζ0, π

∗
0,a)τ

ζ(π∗0,a; γ0, a)

should serve better in small samples than that by π1∗
0,a.

8.2 Estimated Transformation

In this subsection, we again assume that r 6= 0, but now we allow for the (possibly implicit)

function h1(·) describing π1 in terms of ζ and π to depend upon any parameters γ∗ in the

true underlying DGP, viz., π1 = h1(ζ, π; γ∗) ≡ h1∗(ζ, π). Using the sample analog ĥ1
n of h1∗,

ˆ̃
θn = (α̂n, δ̂n, π̂

1
n, π̂n) = (α̂n, δ̂n, ĥ

1
n(ζ̂n, π̂n), π̂n), under the conditions of Lemma 5.1.

Notationally, let h1
n(ζ, π) ≡ h1(ζ, π; γn) under drifting sequences of parameters {γn}. Also,

define

Zn(π) = −n1/2(DψψQn(ψ0,n, π))−1DψQn(ψ0,n, π),

where ψ0,n = (0, ζn). Note that Assumption C4 of Andrews and Cheng (2012a) and Lemma

9.1(a) of Andrews and Cheng (2012b) imply that Zn(·) ⇒ τ(·; γ0, a) + (a, 0dζ ) under {γn} ∈
Γ(γ0, 0, a) with ‖a‖ < ∞. With this empirical process convergence result in mind, we impose

the following high level assumption that a joint empirical process convergence result holds for

(ĥ1
n(·), Zn(·)):

Assumption 12 Under {γn} ∈ Γ(γ0, 0, a) with ‖a‖ <∞,( √
n(ĥ1

n(·)− h1
n(·))

Zn(·)

)
⇒

(
G(·; γ0)

τ(·; γ0, a) + (a, 0dζ )

)
,
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where G(·; γ0) is a mean zero Gaussian process indexed by (ζ, π) = χ ∈ Xε with bounded contin-

uous sample paths and some covariance kernel Ω(χ1, χ2; γ0) for χ1, χ2 ∈ Xε.

Due to the marginal convergence results for Zn(·) mentioned above, verification of Assump-

tion 12 only requires verification that an empirical process CLT holds for ĥ1
n(·) and that the

weak convergence of
√
n(ĥ1

n(·)− h1
n(·)) and Zn(·) occurs jointly.

For an illustration of how to verify this assumption, we return to Example 2.1, letting the

dimension of xi be equal to one for notational simplicity. Here, we have

ĥ1
n(ζ, π) = (n−1

∑
dix

2
i )
−1[ζ1 − λ(δ)π(n−1

∑
dixi)].

Suppose a CLT for triangular arrays holds:

1√
n

( ∑
(dix

2
i − Eγn [dix

2
i ])∑

(dixi − Eγn [dixi])

)
d−→

(
Z1

Z2

)
d∼ N (0,Σγ0)

under {γn} ∈ Γ(γ0, 0, a). Then,

√
n(ĥ1

n(ζ, π)− h1
n(ζ, π))

= ζ1√n
(

1

n−1
∑
dix2

i

− 1

Eγn [dix2
i ]

)
− λ(δ)π

(
n−1/2

∑
dixi

n−1
∑
dix2

i

−
√
nEγn [dixi]

Eγn [dix2
i ]

)

= ζ1√n
(
Eγn [dix

2
i ]− n−1

∑
dix

2
i

Eγn [dix2
i ](n

−1
∑
dix2

i )

)
− λ(δ)π

[
n−1/2

∑
(dixi − Eγn [dixi])

n−1
∑
dix2

i

+

√
nEγn [dixi]

n−1
∑
dix2

i

−
√
nEγn [dixi]

Eγn [dix2
i ]

]

= (ζ1 − λ(δ)πEγn [dixi])
√
n

(
Eγn [dix

2
i ]− n−1

∑
dix

2
i

Eγn [dix2
i ](n

−1
∑
dix2

i )

)
−
(

λ(δ)π

n−1
∑
dix2

i

)
n−1/2

∑
(dixi − Eγn [dixi])

⇒ (λ(δ)πEγ0 [dixi]− ζ1)
Z1

Eγ0 [dix2
i ]

2
−
(
λ(δ)π

Eγ0 [x2
i ]

)
Z2 ≡ G(ζ, π; γ0).

The joint convergence of ĥ1
n(·) and Zn(·) occurs here by a similar argument to that made on

p. 25 of Andrews and Cheng (2012b).

Finally, we need to adapt Assumption 11 to the present context under which the true h1
n
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function depends upon the parameter γn. To do so, let h1
χ,n(χ) = ∂h1

n(χ)/∂χ′ ≡ [h1
ζ,n(χ) :

h1
π,n(χ)]. For χ ∈ Xε, let An(χ) = [A1,n(χ)′ : A2,n(χ)′]′ be an orthogonal dπ1 × dπ1 matrix such

that A1,n(χ) is a (dπ1 −d∗π)×dπ1 matrix whose rows span the null space of h1
π,n(χ)′ and A2,n(χ)

is a d∗π × dπ1 matrix whose rows span the column space of h1
π,n(χ), where d∗π = rank(h1

π,n(χ))

for χ ∈ Xε. [Will it be possible to have the following condition in terms of h1(·, ·; γ0)?] Define

η̄n(χ) ≡

{
n1/2A1,n(χ)

{
h1
n(ζn, π)− h1

n(ζn, πn)
}

if d∗π < dπ1

0 if d∗π = dπ1 .

Assumption 10′ η̄n(χ̂n)
p−→ 0 under {γn} ∈ Γ(γ0, 0, a) for all a ∈ Rdα.

Given Assumptions 10′ and 12, we may now state the distributional convergence result when

using an estimated ĥ1
n.

Theorem 8.3 Suppose Assumptions 1–10, 10′, 12 and Assumptions B1-B3 and C1-C6 of

Andrews and Cheng (2012a), adapted to the θ and Qn(θ) of this paper, hold. Then under

{γn} ∈ Γ(γ0, 0, a) with ‖a‖ <∞,

√
n(α̂n − αn)
√
n(δ̂n − δn)

√
nA1,n(χ̂n)(π̂1

n − π1
n)

A2,n(χ̂n)(π̂1
n − π1

n)

π̂n



d−→



τα(π∗0,a; γ0, a)

τ δ(π∗0,a; γ0, a)

A1,0(ζ0, π
∗
0,a)

{
G0(ζ0, π

∗
0,a) + h1

ζ,0(ζ0, π
∗
0,a)τ

ζ(π∗0,a; γ0, a)
}

A2,0(ζ0, π
∗
0,a)

{
h1

0(ζ0, π
∗
0,a)− h1

0(ζ0, π0)
}

π∗0,a


,

where A1,0(·) ≡ A1(·; γ0), A2,0(·) ≡ A2(·; γ0), G0(·) ≡ G(·; γ0), h1
0(·) ≡ h1(·; γ0) and h1

ζ,0(·) ≡
h1
ζ(·; γ0) as abbreviations.

Proof: Similarly to the proof of Proposition 8.2, Lemma 3.1 and Theorem 4.1 imply that

Assumption R1 of Andrews and Cheng (2014a) holds for r(θ) = h1
n(χ) in this context. [Or,

again, a condition in terms of h1(·, ·; γ0)?] Now, note that Proposition 8.1, and the CMT imply

√
n(ĥ1

n(ζ̂n, π̂n)− h1
n(ζ̂n, π̂n))

d−→ G(ζ0, π
∗(γ0, a); γ0)
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under {γn} ∈ Γ(γ0, 0, a) since ζ̂n = ζn + Op(n
−1/2)

p−→ ζ0 and π̂n is a continuous function of

Zn(·) and DψψQn(ψ0,n, ·), which converge jointly with each other and with ĥ1
n(·) by Assumption

C4 of Andrews and Cheng (2012a) and Assumption 12. Hence,

√
nA1,n(χ̂n)

{
ĥ1
n(χ̂n)− h1

n(χn)
}

= A1,n(ζ̂n, π̂n)
√
n
{
ĥ1
n(ζ̂n, π̂n)− h1

n(ζ̂n, π̂n)
}

+
√
nA1,n(ζ̂n, π̂n)

{
h1
n(ζ̂n, π̂n)− h1

n(ζn, πn)
}

d−→ A1(ζ0, π
∗(γ0, a); γ0)

{
G(ζ0, π

∗(γ0, a); γ0) + h1
ζ(ζ0, π

∗(γ0, a); γ0)τ ζ(π∗(γ0, a); γ0, a)
}

by Proposition 8.1, the CMT and (a slightly modified version of) Proposition 8.2. On the other

hand,

A2,n(χ̂n)
{
ĥ1
n(χ̂n)− h1

n(χn)
}

= A2,n(ζ̂n, π̂n)
{
ĥ1
n(ζ̂n, π̂n)− h1

n(ζ̂n, π̂n)
}

+A2,n(ζ̂n, π̂n)
{
h1
n(ζ̂n, π̂n)− h1

n(ζn, πn)
}

d−→ A2(ζ0, π
∗(γ0, a); γ0)

{
h1(ζ0, π

∗(γ0, a); γ0)− h1(ζ0, π0; γ0)
}

by Proposition 8.1, the CMT, (a slightly modified version of) Proposition 8.2 and the fact that

ĥ1
n(ζ̂n, π̂n) − h1

n(ζ̂n, π̂n) = Op(n
−1/2). Similarly to the proof of Proposition 8.2, the marginal

convergence results follow directly from Proposition 8.1. Also, α̂n, δ̂n, π̂n, A1,n(χ̂n), A2,n(χ̂n)

and π̂1
n are all continuous functions of ψ̂(π̂n), π̂n and ĥ1

n. In turn, ψ̂(π̂n) and π̂n are continuous

functions of Zn(·), DψψQn(ψ0,n, ·) and ĥ1
n(·) (see Andrews and Cheng, 2012b) so that joint

convergence of all random variables follows from Proposition 8.1, the CMT, Assumption 12 and

Assumption C4 of Andrews and Cheng (2012a). �

In analogy with the previous subsection, we may directly express the limiting joint distri-

butional behavior of
ˆ̃
θn in the following corollary. Let An(χ)−1 = [A1

n(χ) : A2
n(χ)], which forms

a conformable partition such that A1
n(χ) is a dπ1 × (dπ1 − d∗π) matrix and A2

n(χ) is a dπ1 × d∗π
matrix. Similarly, let A0(χ)−1 = [A1

0(χ) : A2
0(χ)]. The proof of the following corollary is very

similar to that of Corollary 8.1 and therefore omitted.

Corollary 8.4 Under the assumptions of Theorem 8.3 and {γn} ∈ Γ(γ0, 0, a) with ‖a‖ <∞,
√
n(α̂n − αn)
√
n(δ̂n − δn)

π̂1
n

π̂n

 d−→


τα(π∗0,a; γ0, a)

τ δ(π∗0,a; γ0, a)

π1∗
0,a

π∗0,a

 ,
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where

π1∗
0,a = π1

0 +A2
0(ζ0, π

∗
0,a)A2,0(ζ0, π

∗
0,a)(h

1
0(ζ0, π

∗
0,a)− h1

0(ζ0, π0)).

Remark 8.5 A similar remark to Remark 8.2 applies here, in the estimated h case. That is,

π1∗
0,a + n−1/2A1(ζ0, π

∗
0,a)A1(ζ0, π

∗
0,a){G0(ζ0, π

∗
0,a) + h1

ζ(ζ0, π
∗
0,a)τ

ζ(π∗0,a; γ0, a)}

should serve as a better finite sample approximation to the distribution of π̂1
n than π1∗

0,a alone.

This is especially true in light of the estimation error involved with ĥ1
n.

9 Inference

In this section, we develop robust inference procedures for the original parameter θ̃. In order to

do so, we first determine the asymptotic properties of test statistics.

9.1 Test Statistics and Asymptotic Distributions

We are interested in general nonlinear hypotheses of the form

H0 : r̃(θ̃) = v ∈ r̃(Θ̃).

9.1.1 Wald Statistics

We begin this section by defining the Wald statistics we will be analyzing. In order to define the

test statistics, we make the following two additional assumptions regarding the behavior of the

extremum objective function under {γn} ∈ Γ(γ0,∞, ω0) (strong and semi-strong identification

sequences). They are identical to Assumptions D2 and D3 of Andrews and Cheng (2012a). [The

introduction of B needs to be done with care. See Remark 5.2.]First, let

B̃(α) ≡

(
Idα+dδ 0(dα+dδ)×dπ̃

0dπ̃×d(dα+dδ)
ι(α)Idπ̃

)
, ι(α) ≡

{
α, if αis a scalar,

‖α‖, if αis a vector.

Second, define DQ̃n(θ̃) ∈ Rdθ̃ as a stochastic generalized first derivative vector of Q̃n(θ̃) and

D2Q̃n(θ̃) ∈ Rdθ̃×dθ̃ as a generalized second derivative matrix of Q̃n(θ̃) that is symmetric and

may be stochastic or nonstochastic.

Assumption 13 Under {γn} ∈ Γ(γ0,∞, ω0), J̃n = B̃−1(αn)D2Q̃n(θ̃n)B̃−1(αn)
p−→ J̃(γ0) ∈

Rdθ̃×dθ̃ , where J̃(γ0) is nonsingular and symmetric.
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Assumption 14 (i) Under {γn} ∈ Γ(γ0,∞, ω0), n1/2B̃−1(αn)DQ̃n(θ̃n)
d−→ G̃(γ0) ∼ N (0dθ , Ṽ (γ0))

for some symmetric dθ̃ × dθ̃ matrix Ṽ (γ0).

(ii) Ṽ (γ0) is positive definite for all γ0 ∈ Γ.

With these assumptions in hand, let

ˆ̃Σn ≡ ˆ̃J−1
n

ˆ̃Vn
ˆ̃J−1
n ,

where ˆ̃Jn and ˆ̃Vn are estimators of J̃(γ0) and Ṽ (γ0). The Wald statistic for H0 based upon
ˆ̃
θn

can be written as

Wn(v) ≡ n(r̃(
ˆ̃
θn)− v)′(r̃θ̃(

ˆ̃
θn)B̃−1(α̂n) ˆ̃ΣnB̃

−1(α̂n)r̃θ̃(
ˆ̃
θn)′)−1(r(

ˆ̃
θn)− v),

where r̃θ̃(θ̃) ∈ Rdr̃×dθ̃ . To obtain the asymptotic distribution of Wn(v) under {γn} ∈ Γ(γ0, 0, a),

in addition to Assumptions 13–14 and the assumptions imposed in Proposition 8.2 or Theorem

8.3, we also impose the following assumptions.

Assumption 15 (i) r̃(θ̃) is continuously differentiable on Θ̃.

(ii) r̃θ̃(θ̃) has full row rank dr for all θ̃ ∈ Θ̃.

(iii) rank(r̃π̃(θ̃)) = d∗π̃ for some constant d∗π̃ ≤ min{dr, dπ̃} for all θ̃ ∈ Θ̃ε ≡ {θ̃ ∈ Θ̃ : ‖α‖ < ε}
for some ε > 0.

This assumption is identical to Assumption R1 of Andrews and Cheng (2014a), applied to

r̃. For the next assumption, let Ã(θ̃) = [Ã1(θ̃)′ : Ã2(θ̃)′]′ be an orthogonal dr̃ × dr̃ matrix such

that Ã1(θ̃) is a (dr̃ − d∗π̃) × dr̃ matrix whose rows span the null space of r̃π̃(θ̃)′ and Ã2(θ̃) is a

d∗π̃ × dr̃ matrix whose rows span the column space of r̃π̃(θ̃). Let

η̃n(θ̃) =

{
n1/2Ã1(θ̃) {r̃(αn, δn, π̃)− r̃(αn, δn, π̃n)} , if d∗π̃ < dr̃

0, otherwise.

Assumption 16 Under {γn} ∈ Γ(γ0, 0, a), η̃n(
ˆ̃
θn)

p−→ 0 for all a ∈ Rdα.

Next we impose an assumption on the variance matrix estimator ˆ̃Σn that is directly analogous

to Assumption V1 of Andrews and Cheng (2014a). As in that, paper, we must treat the

cases when α is scalar and when α is a vector separately. When α is scalar, ˆ̃Jn = ˆ̃Jn(
ˆ̃
θn)

and ˆ̃Vn = ˆ̃Vn(
ˆ̃
θn), where supθ̃∈Θ̃ ‖

ˆ̃Jn(θ̃) − J̃(θ̃; γ0)‖, supθ̃∈Θ̃ ‖
ˆ̃Vn(θ̃) − Ṽ (θ̃; γ0)‖ p−→ 0 for some

nonstochastic dθ̃ × dθ̃ matrix-valued functions J̃(θ̃; γ0) and Ṽ (θ̃; γ0) such that J̃(θ̃0; γ0) = J̃(γ0)
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and Ṽ (θ̃0; γ0) = Ṽ (γ0). Finally, the limiting variance matrix under weak identification sequences

in this case will equal

Σ̃(π̃; γ0) = Σ̃(α0, δ0, π̃; γ0) where Σ̃(θ̃; γ0) = J̃−1(θ̃; γ0)Ṽ (θ̃; γ0)J̃−1(θ̃; γ0),

evaluated at π̃ = (π1∗
0,a, π

∗
0,a).

For the vector α case, reparameterize α as (‖α‖, ω), where ω = α/‖α‖ if α 6= 0 and define

ω = 1dα/‖1dα‖ if α = 0. Correspondingly, reparameterize θ̃ as θ̃+ = (‖α‖, ω, δ, π̃). Let
ˆ̃
θ+
n and θ̃+

0

be the correspondingly reparameterized versions of
ˆ̃
θn and θ̃0. In the vector α case, ˆ̃Jn = ˆ̃Jn(

ˆ̃
θ+
n )

and ˆ̃Vn = ˆ̃Vn(
ˆ̃
θ+
n ), where supθ̃+∈Θ̃+ ‖ ˆ̃Jn(θ̃+) − J̃(θ̃+; γ0)‖, supθ̃+∈Θ̃+ ‖ ˆ̃Vn(θ̃+) − Ṽ (θ̃+; γ0)‖ p−→ 0

with Θ̃+ ≡ {θ̃+ : θ̃ ∈ Θ̃} for some nonstochastic dθ̃ × dθ̃ matrix-valued functions J̃(θ̃+; γ0) and

Ṽ (θ̃+; γ0) such that J̃(θ̃+
0 ; γ0) = J̃(γ0) and Ṽ (θ̃0;+ γ0) = Ṽ (γ0). For π ∈ Π, let

ω∗(π; γ0, a) =
τα(π; γ0, a)

‖τα(π; γ0, a)‖
,

where τα(π; γ0, a) denotes the first dα entries of τ(π; γ0, a) (defined in Proposition 8.1). The

limiting variance matrix under weak identification sequences in this case will equal

Σ̃(π̃, ω; γ0) = Σ̃(‖α0‖, ω, δ0, π̃; γ0) where Σ̃(θ̃+; γ0) = J̃−1(θ̃+; γ0)Ṽ (θ̃+; γ0)J̃−1(θ̃+; γ0),

evaluated at π̃ = (π∗0,a, π
1∗
0,a) and ω = ω∗(π∗0,a; γ0, a).

Assumption 17 Assumption V1 of Andrews and Cheng (2014a) holds for ˆ̃Σn and its associated

quantities.

We are now ready to state the result for the asymptotic distribution of the Wald statistic

under weak identification sequences but we must first define the quantities that appear in the

limiting random variable. First, let θ̃∗0,a = (α0, δ0, π
∗
0,a, π

1∗
0,a), where π1∗

0,a is defined according to

either Corollary 8.1 or 8.4, depending on the context. Second, let

qÃ(θ̃; γ0, a) =

(
Ã1(θ̃)r̃(α,δ)(θ̃)[τ

α(π; γ0, a) : τ δ(π; γ0, a)]

ι(a+ τα(π; γ0, a))Ã2(θ̃)(r̃(θ̃)− r̃(θ̃0))

)
.

Third, let

r̃Ã
θ̃

(θ̃) =

(
Ã1(θ̃)r̃(α,δ)(θ̃) 0

0 Ã2(θ̃)r̃π̃(θ̃)

)
.
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Finally, let

¯̃Σ(π̃; γ0, a) =

{
Σ̃(π̃; γ0) if αis scalar

Σ̃(π̃, ω∗(π; γ0, a); γ0) if αis a vector.

Under a sequence {γn}[a weak identification sequence?], we consider the sequence of null

hypotheses H0 : r̃(θ̃) = vn, where vn = r̃(θ̃n).

Proposition 9.1 Suppose Assumptions 1–10, 13–17 and Assumptions B1-B3 and C1-C6 of

Andrews and Cheng (2012a), adapted to the θ and Qn(θ) of this paper, hold.

(i) In the case of known h, if Assumption 11 also holds, under {γn} ∈ Γ(γ0, 0, a) with

‖a‖ <∞,

Wn(vn)
d−→ qÃ(θ̃∗0,a; γ0, a)′(r̃Ã

θ̃
(θ̃∗0,a)

¯̃Σ(π∗0,a, π
1∗
0,a; γ0, a)r̃Ã

θ̃
(θ̃∗0,a)

′)−1qÃ(θ̃∗0,a; γ0, a),

where π1∗
0,a is defined according to Corollary 8.1.

(ii) In the case of estimated h, if Assumptions 10′ and 12 also hold, under {γn} ∈ Γ(γ0, 0, a)

with ‖a‖ <∞,

Wn(vn)
d−→ qÃ(θ̃∗0,a; γ0, a)′(r̃Ã

θ̃
(θ̃∗0,a)

¯̃Σ(π∗0,a, π
1∗
0,a; γ0, a)r̃Ã

θ̃
(θ̃∗0,a)

′)−1qÃ(θ̃∗0,a; γ0, a),

where π1∗
0,a is defined according to Corollary 8.4.

Proof: We provide the proof for part (ii) only since the proof for part (i) is nearly identical.

Begin by noting that under H0 we can express the Wald statistic as

Wn(vn) = qÃn (
ˆ̃
θn)′(r̃Ã

θ̃,n
(
ˆ̃
θn) ˆ̃Σnr̃

Ã
θ̃,n

(
ˆ̃
θn)′)−1qÃn (

ˆ̃
θn),

where

qÃn (
ˆ̃
θn) = n1/2B∗(α̂n)Ã(

ˆ̃
θn)(r̃(

ˆ̃
θn)− r̃(θ̃n)) and rÃ

θ̃,n
(
ˆ̃
θn) = B∗(α̂n)Ã(

ˆ̃
θn)r̃θ̃(

ˆ̃
θn)B̃−1(α̂n)

with

B∗(α̂n) =

(
Idr̃−d∗π̃ 0

0 ι(α̂n)Id∗π

)
.

Note that

rÃ
θ̃,n

(
ˆ̃
θn) = B∗(α̂n)

(
Ã1(

ˆ̃
θn)r̃(α,δ)(

ˆ̃
θn) 0

Ã2(
ˆ̃
θn)r̃(α,δ)(

ˆ̃
θn) Ã2(

ˆ̃
θn)r̃π̃(

ˆ̃
θn)

)
B̃−1(α̂n)
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=

(
Ã1(

ˆ̃
θn)r̃(α,δ)(

ˆ̃
θn) 0

ι(α̂n)Ã2(
ˆ̃
θn)r̃(α,δ)(

ˆ̃
θn) Ã2(

ˆ̃
θn)r̃π̃(

ˆ̃
θn)

)
d−→ r̃Ã

θ̃
(θ̃∗0,a), (9.1)

where the convergence follows from Corollary 8.4, Assumption 14(i) and the CMT since ι(α̂n) =

op(1) by Corollary 8.4 and Ã2(
ˆ̃
θn)r̃(α,δ)(

ˆ̃
θn) = Op(1) by Assumption 14(i). Turning to the qÃn (

ˆ̃
θn)

term, note that

r̃(
ˆ̃
θn)− r̃(θ̃n) = {r̃(α̂n, δ̂n, ˆ̃πn)− r̃(αn, δn, ˆ̃πn)}+ {r̃(αn, δn, ˆ̃πn)− r̃(αn, δn, π̃n)}

= r̃(α,δ)(
ˆ̃
θn)[(α̂n, δ̂n)− (αn, δn)] + {r̃(αn, δn, ˆ̃πn)− r̃(αn, δn, π̃n)}+ op(n

−1/2),

where the second equality follows from a mean-value expansion, the fact that (α̂n, δ̂n)−(αn, δn) =

Op(n
−1/2) by Corollary 8.4 and Assumption 14(i). Hence,

qÃn (
ˆ̃
θn) =

(
n1/2Ã1(

ˆ̃
θn)(r̃(

ˆ̃
θn)− r̃(θ̃n))

n1/2ι(α̂n)Ã2(
ˆ̃
θn)(r̃(

ˆ̃
θn)− r̃(θ̃n))

)
= qÃ1,n(

ˆ̃
θn) + qÃ2,n(

ˆ̃
θn) + op(1),

where

qÃ1,n(
ˆ̃
θn) =

(
n1/2Ã1(

ˆ̃
θn)r̃(α,δ)(

ˆ̃
θn)((α̂n, δ̂n)− (αn, δn))

n1/2ι(α̂n)Ã2(
ˆ̃
θn)(r̃(αn, δn, ˆ̃πn)− r̃(αn, δn, π̃n))

)

qÃ2,n(
ˆ̃
θn) =

(
η̃n(

ˆ̃
θn)

n1/2ι(α̂n)Ã2(
ˆ̃
θn)r̃(α,δ)(

ˆ̃
θn)((α̂n, δ̂n)− (αn, δn))

)
.

Note that Assumption 15, the fact that (α̂n, δ̂n) − (αn, δn) = Op(n
−1/2) and ι(α̂n) = op(1) by

Corollary 8.4 and Assumption 14(i) imply that qÃ2,n(
ˆ̃
θn) = op(1). Hence,

qÃn (
ˆ̃
θn) = qÃ1,n(

ˆ̃
θn) + op(1)

d−→ qÃ(θ̃∗0,a; γ0, a) (9.2)

by Corollary 8.4, Assumption 14(i) and the CMT. Now, for the case of scalar α,

ˆ̃Σn = ˆ̃J(
ˆ̃
θn)−1 ˆ̃V (

ˆ̃
θn) ˆ̃J(

ˆ̃
θn)−1 d−→ Σ̃(π∗0,a, π

1∗
0,a; γ0) (9.3)

by Assumption 16, Corollary 8.4 and the CMT. The analogous argument holds for the vector α

case. Finally, the convergence of (9.1), (9.2) and (9.3) occurs jointly by Corollary 8.4 and the

CMT, providing the result of the theorem. �
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9.1.2 QLR Statistics

...

9.2 Confidence Sets

...

9.3 Robust Inference

Let Tn(v) denote a generic test statistic for the null hypothesis for a test of level α̃. For some

a ∈ Rdα∞ , the limit distribution of Tn(vn) under {γn} ∈ Γ(γ0, 0, a), where vn = r(hn(θn)), provides

a good approximation to the finite-sample distribution of Tn(v). Let λ ≡ (a, γ0) ∈ Λ ≡ {(a, γ0) :

for some {γn} ∈ Γ(γ0), n1/2αn → a ∈ Rdα∞ } and let T (λ) denote the asymptotic distribution of

Tn(vn) under {γn} ∈ Γ(γ0, 0, a). Let cT,1−α̃(λ) denote the 1 − α̃ quantile of this distribution.

Under {γn} ∈ Γ(γ0,∞, ω0), Tn(vn) is assumed to have a standard asymptotic distribution. Let

cT,1−α̃(∞) denote the 1− α̃ quantile of this distribution.

We construct critical values that (uniformly) control the asymptotic size of a test based upon

test statistic Tn(v). The first construction is more computationally straightforward while the

second leads to tests with more desirable finite-sample properties (in terms of size and power).

9.3.1 ICS Critical Values

The first type of CV is the direct analog of Andrews and Cheng’s (2012a) Type I Robust

CV. Define tn ≡ (nα̂′nΣ̂−1
αα,nα̂n/dα)1/2, where Σ̂αα,n is a consistent estimator of the asymptotic

covariance matrix of n1/2α̂n under {γn} with α0 6= 0 (strong identification sequences) and

suppose {κn} is a sequence of constants such that κn →∞ and κn/n
1/2 → 0. Then the ICS CV

is defined as follows:

c̃T,1−α̃,n ≡

cLFT,1−α̃ if tn ≤ κn
cT,1−α̃(∞) if tn > κn,

where cLFT,1−α̃ ≡ supλ∈Λ̂n∩Λ(v) cT,1−α̃(λ) with Λ̂n ≡ {λ = (a, γ0) ∈ Λ : γ0 = (α0, ζ̂n, π0, φ0)} and

Λ(v) ≡ {λ = (a, γ0) : r(h(θ0)) = v}. That is, we both impose H0 and “plug-in” a consistent

estimator ζ̂n of ζ0 in the construction of the CV. This leads to tests with smaller CVs and hence

better power (see, e.g., Andrews and Cheng, 2012a for a discussion).
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9.3.2 Adjusted-Bonferroni Critical Values

The second type of CV is the adjusted-Bonferroni CV of McCloskey (2012). Let ân = n1/2α̂n.

Using the asymptotic distributional results of Proposition 8.1, one can form asymptotically

valid confidence sets for the vector (a, ζ0, π0) using the sample counterpart (ân, ζ̂n, π̂n) under

{γn} ∈ Γ(γ0, 0, a). Similarly to the ICS CV in the previous subsection, one may both impose H0

and “plug-in” for the value of ζ̂n since it is consistent for ζ0. Denote a (1−b)-level, estimate-based

confidence set for (a, ζ0, π0) as Ib(ân, ζ̂n, π̂n). We assume this confidence set has the following

properties: (i) Pγn((a, ζ0, π0) ∈ Ib(ân, ζ̂n, π̂n)) → 1 − b under {γn} ∈ Γ(γ0, 0, a) (asymptotically

correct coverage), (ii) Ĩb(ân, ζ̂n, π̂n) ≡ {λ = (a, γ) ∈ Λ : (a, ζ, π) ∈ Ib(ân, ζ̂n, π̂n)} ⊂ Λ̂n ∩ Λ(v)

with probability one (plug-in and null-imposed) and (iii) as a correspondence, Ib : Rdα∞ × Rdζ ×
Rdπ ⇒ Rdα∞ × Rdζ × Rdπ is continuous. For a given b ∈ [0, 1], the adjusted-Bonferroni CV is

defined as follows. First, compute the largest value ᾱ ∈ [0, α̃] such that the following inequality

approximately holds:

sup
λ∈Λ̂n∩Λ(v)

P (T (λ) ≥ sup
`∈Ĩb(ã,ζ0,π∗(a;γ0))

cT,1−ᾱ(`)) ≤ α̃,

where ân
d−→ a + τα(π∗(γ0, a); γ0, a) ≡ ã under {γn} ∈ Γ(γ0, 0, a) by Proposition 8.1. This

computation can be achieved by simulating from the joint distributions of (T (λ), ã, π∗(a; γ0)).

The adjusted-Bonferroni CV is then defined as sup`∈Ĩb(ân,ζ̂n,π̂n) cT,1−ᾱ(`). See Algorithm Bonf-

Adj in McCloskey (2012) for details on the computation of this CV.

10 Simulations

...

11 Application

...

12 Conclusions

...
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