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Abstract

We consider forecasting with uncertainty about the choice of predictor variables. The researcher
wants to select a model, estimate the parameters, and use the parameter estimates for forecasting.
We investigate the distributional properties of a number of different schemes for model choice and
parameter estimation: in-sample model selection using the Akaike information criterion, out-of-
sample model selection, and splitting the data into subsamples for model selection and parameter
estimation. Using a weak-predictor local asymptotic scheme, we provide a representation result that
facilitates comparison of the distributional properties of the procedures and their associated fore-
cast risks. We develop a simulation procedure that improves the accuracy of the out-of-sample and
split-sample methods uniformly over the local parameter space. We also examine how bootstrap ag-
gregation (bagging) affects the local asymptotic risk of the estimators and their associated forecasts.
Numerically, we find that for many values of the local parameter, the out-of-sample and split-sample
schemes perform poorly if implemented in the conventional way. But they perform well, if imple-
mented in conjunction with our risk-reduction method or bagging.
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1 Introduction

In this paper, we reconsider the problem of forecasting when there is uncertainty about the forecasting

model. As is well known, a model that fits well in sample may not be good for forecasting—a model may

fit well in-sample, only to turn out to be useless in prediction. Consequently, it is common practice to

select the model based on pseudo-out-of-sample fit from a sequence of recursive or rolling predictions.

Parameters are then estimated over the whole sample period. The idea of using an out-of-sample crite-

rion was advocated by Ashley, Granger, and Schmalensee (1980) and Clark (2004), and is very intuitive:

it is what a researcher could have done at the time. Alternatively, one might select the model based on

in-sample fit, but adjust for overfitting by using an information criterion, such as the Akaike Information

Criterion (AIC) (Akaike, 1974), as advocated by Inoue and Kilian (2006).

We consider a pseudo-likelihood setting with a fixed number k of potential parameters to be estimated,

each of which has a coefficient that is local to zero. Selecting a forecasting model amounts to selecting

a set of zero restrictions; in a regression setting, for example, this would indicate which predictors are

excluded from the regression. Thus there are up to 2k possible models among which we can choose.

Having chosen the model, we then have to estimate the parameters and use these for forecasting. Al-

though some model will be best in terms of predictive accuracy, the local-to-zero nesting means that

we can never consistently select that model. We consider various methods of model selection and fore-

casting, including: using in-sample fit with the AIC information criterion; selecting the model based on

recursive pseudo-out-of-sample forecast accuracy and then using the whole dataset for parameter es-

timation; and splitting the sample into two parts, using one part for model selection and the other for

parameter estimation. We call this last method the split-sample approach. Unlike the first two methods,

it is not commonly used in practice. But it does ensure independence between parameter estimates and

model selection, unlike methods based on in-sample fit (Leeb and Pötscher, 2005; Hansen, 2009), and

also unlike the standard out-of-sample approach.

We obtain asymptotic characterizations of these forecasting procedures under the local parameter se-

quence. A key step is to obtain an asymptotic representation of the partial sum process for the score

function as the sum of a term that is directly informative about the local parameters, and another term

that is an independent Gaussian process. This allows us to provide a limit-experiment type represen-
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tation of the procedures, from which we can calculate normalized local asymptotic mean square pre-

diction errors up to O(T −1) terms. We show that the recursive pseudo-out-of-sample and split-sample

procedures are inefficient, in the sense that their limit distributions depend on the ancillary Gaussian

noise process.

Our characterizations also suggest ways to improve upon these procedures. The influence of the ancil-

lary noise term in the limiting asymptotic representation can be eliminated by a conditioning argument.

We can implement this noise reduction via a simulation-and-averaging scheme; doing this is shown to

uniformly improve the out-of-sample and split-sample methods asymptotically for a wide variety of loss

functions.

This method is related to bootstrap aggregating (bagging) (Breiman, 1996) in which the data are resam-

pled, the forecasting method is applied to the resampled data, and the resulting forecasts are then av-

eraged over all the bootstrap samples. Bagging has a smoothing effect that alters the risk properties

of estimators, but the averaging over bootstrap draws can also reduce the influence of the extraneous

noise term in the out-of-sample and split-sample methods. Earlier theoretical work on bagging, notably

Bühlmann and Yu (2002), emphasized its smoothing effect but not the noise reduction effect1.

We then numerically compare the various procedures, both in terms of their local asymptotic risk, and

their finite-sample performance. In their standard forms there is no unambiguous rank ordering among

the in-sample, out-of-sample and split-sample methods, but we find that for many values of the local-

ization parameter, in-sample forecasting using the AIC gives the most accurate forecasts, out-of-sample

prediction does worse, and the split-sample method does worst of all. This is intuitive because the out-

of-sample and split-sample schemes are in some sense wasting data, and is essentially the argument of

Inoue and Kilian (2004) and Inoue and Kilian (2006) for the use of in-sample rather than out-of-sample

predictability tests. However, introducing the simulation or bagging step changes the rank ordering sub-

stantially. Our simulation scheme has no effect on in-sample forecasts, but reduces the local asymptotic

mean square prediction error of the out-of-sample and split-sample forecasts uniformly in the localiza-

tion parameter, and the reductions are generally numerically large. Bagging can modestly reduce the

local asymptotic mean square prediction error of the in-sample forecasts over some parts of the param-

1One other useful feature of the out-of-sample forecasting setup is that it can be constructed to use only real-time data which
precisely mimics the data available to a researcher in the presence of data revisions. Unfortunately, adding our simulation
scheme or bootstrap aggregation step destroys this feature.
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eter space, but it makes a more dramatic difference to the out-of-sample and split-sample forecasts. In

our numerical work, we find no case in which bagging fails to reduce the local asymptotic mean square

prediction error of out-of-sample and split-sample forecasts, although this is not guaranteed by our the-

oretical results.

For many values of the localization parameter, the incorporation of either our simulation scheme or bag-

ging entirely reverses the relative ordering of the in-sample, out-of-sample, and split-sample prediction

methods. When the true model includes only a single predictor and the number of candidate predictors

is large, we find that the use of the split-sample approach with either our simulation scheme or bagging

provides the most accurate forecasts from among any of the methods considered here.

In the next section, we set up the model and introduce the various procedures we will evaluate. In Section

3, we derive asymptotic characterizations via our representation theorem for the partial sum process.

Section 4 contains some extensions. Section 5 explores the asymptotic risk properties of the procedures

numerically. Section 6 examines some finite-sample simulation evidence, and Section 7 concludes.

2 Pseudo-Likelihood Framework

We observe (yt , xt ) for t = 1, . . . ,T and wish to forecast yT+1 given knowledge of xT+1. Let the pseudo log

(conditional) likelihood be

`(β) =
T∑

t=1
`t (β) =

T∑
t=1

f (yt |xt ,β),

where f is a conditional density function and the parameter β is k × 1. This framework could apply

to cross-sectional regression of an outcome variable yt on a k ×1 vector of predictors xt , h-step ahead

forecasting regressions (where xt are suitably lagged predictor variables), vector autoregression (where

xt contains lagged values of the vector yt ), and nonlinear regression models. There may be unmodeled

dependence, subject to the large-sample distributional assumptions imposed below.

Model selection amounts to setting some elements of β to zero, and estimating the others. Thus there

are up to 2k possible models. Let m ⊂ {1, . . . ,k} denote a model, with the interpretation that the elements

of m indicate which coefficients of β are allowed to be nonzero. The set of possible models M is a subset

of the power set of {1, . . . ,k}.
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We consider a variety of strategies for model selection and parameter estimation. Each strategy will end

up giving us an estimator for β, some elements of which will be zero. We denote this overall estimator as

β̃. The strategies that we consider are:

1. MLE Set β̃ to the unrestricted (pseudo) maximum likelihood estimator, β̂, that maximizes `(β).

2. JS The positive-part James-Stein estimator uses the unrestricted estimate β̂ and an estimate V̂ of

its asymptotic variance-covariance matrix. The JS estimator for k > 2 is

β̃= β̂max

(
1− k −2

T β̂′V̂ −1β̂
,0

)
.

3. Small Model Set β̃= 0.

4. AIC (In-sample) For each model m ∈M , let β̂(m) denote the restricted pseudo-ML estimator that

maximizes `(β) subject to the zero restrictions implied by m. (Thus, β̂(m) is a k × 1 vector with

zeros in the locations implied by m.) Let n(m) be the number of free parameters in model m. For

each m ∈M we calculate the AIC objective function

AIC (m) = 2`(β̂(m))−2n(m),

and choose the model m∗ that maximizes AIC (m). Then set β̃= β̂(m∗).

5. Out of Sample For each model m, we estimate the model recursively starting a fraction π ∈ (0,1)

of the way through the sample, and calculate its one-period-ahead predictive density to obtain a

pseudo out-of-sample estimate of predictive performance. Let β̂1,t−1(m) denote the pseudo max-

imum likelihood estimate for model m using observations 1 to t −1. For each m, we calculate

T∑
t=[Tπ]+1

`t (β̂1,t−1(m)).

We then choose the model m that maximizes this predictive likelihood, and use the full sample for

estimation of the model.2

2Several authors test for the statistical significance of differences in out-of-sample forecasting performance with one model,
typically a simple benchmark, as the null (see, for example Diebold and Mariano (1995) and Hansen and Timmermann (2013)).
Here we are instead thinking of selecting the model based on the point estimate of its pseudo out-of-sample predictive perfor-
mance.
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6. Split-sample For each model m, we calculate AIC using data up to a fraction π of the way through

the sample:

AICss(m) = 2`(β̂1,[Tπ](m))−2n(m).

For m∗ = argmax AICss(m), we use the second fraction of the sample to estimate the model pa-

rameters:

β̃= β̂[Tπ]+1,T (m∗).

Later in the paper, we also consider adding a bagging (bootstrap aggregation) step to the procedures

described above.

Forecasts for yT+1 will typically depend on an estimate ofβ. Let β̃ be any of the estimators ofβ, including

post-model selection estimators that set some elements of the coefficient vector to zero. We focus on

obtaining limiting distributions for β̃ in a form that facilitates estimation and forecast risk comparisons.

2.1 Example: Prediction in a Regression Model

To illustrate our approach in a simple setting, we consider prediction using a standard regression model:

yt =β′xt +ut , (2.1)

where the ut are i.i.d. with mean 0, finite varianceσ2, and 2+δfinite moments for some δ> 0. We assume

xt is a k ×1 stationary vector that has been orthonormalized, so that E [xt x ′
t ] = Ik . (The orthonormality

of xt is not essential for the analysis, but simplifies the notation.)

This model fits into the general pseudo-likelihood framework of Section 2, using the standard Gaussian

likelihood. Then β̂, the unrestricted pseudo-ML estimator of β, is the OLS estimator; and β̂(m), the

restricted pseudo-ML estimator under model m, is the restricted OLS estimator using only the regressors

indicated by m. Each model corresponds to some subset of the k regressors that are to be used for

forecasting.

Consider forecasts of the form β̃′xT+1, where β̃ can again be any of the estimators of β. The uncondi-
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tional mean squared prediction error is

MSPE = E
[
(yT+1 − β̃′xT+1)2]= E

[
(uT+1 + (β− β̃)′xT+1)2]

=σ2 +E
[
(β− β̃)′(β− β̃)

]+o
(
T −1) . (2.2)

The first term on the right hand side of (2.2) is the asymptotic forecast error neglecting parameter un-

certainty, which is the same for all forecasts. The second term is O(T −1) and differs across forecasting

methods. We therefore normalize the mean square prediction error as:

N MSPE = T
(
MSPE −σ2)= T E

[
(β− β̃)′(β− β̃)

]+o(1).

We could also consider other measures of forecast performance, such as forecast accuracy conditional

on xT+1. We will develop approximations for the distribution of β̃ that can be used under a variety of loss

functions.

To gain further intuition for our theoretical results in the next section, consider the special case where

the ut are i.i.d. N (0,1) and the regressors are treated as fixed and satisfy 1
T

∑T
t=1 xt x ′

t = Ik . Then the least

squares estimator for the full set of parameters has an exact normal distribution:

β̂=
(

T∑
t=1

xt x ′
t

)−1 T∑
t=1

xt yt ∼ N
(
β,σ2Ik /n

)

and β̂ is a minimal sufficient statistic for β. If a procedure makes nontrivial use of information in the

data other than that contained in β̂, it is introducing an unnecessary source of randomness. In the next

section we will obtain an asymptotic analog to this argument in the general pseudo-likelihood setting,

and show how it applies to the various procedures we consider.

3 Local Asymptotics

In order to capture the role of parameter and model uncertainty in our analysis, the joint distribution of

{(y1, x1), . . . , (yT , xT )} is assumed to be a triangular array with drifting parameters. Let {(y1, x1), . . . , (yT , xT )}
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have joint distribution PT , and define the pseudo-true value of the parameter as

β0,T = argmax
β

∫
`(β)dPT .

We take the pseudo-true values (or functions of them) as our objects of interest. We will take limits as

T →∞ under the assumption that

β0,T = bp
T

, b ∈Rk .

This type of drifting sequence was also used by Claeskens and Hjort (2008) and Inoue and Kilian (2004) to

study the large-sample properties of model selection procedures. It preserves the role of parameter un-

certainty in the asymptotic approximations, unlike fixed-alternative asymptotics in which model selec-

tion can determine which coefficients are nonzero with probability approaching one. The analysis could

be extended to allow some components of β to be localized away from zero, corresponding to situations

where some components of β are known to be nonzero. We use →d to denote weak convergence and

→p to denote convergence in probability under the sequence of measures {PT }∞T=1. Our results below

depend crucially on the convergence properties of the partial sums of the pseudo-likelihood function.

We make the following high level assumptions.

Assumption 3.1

T −1/2Σ[Tr ]
t=1

∂`t (β0,T )

∂β
→d B(r ),

where B(r ) is a k-dimensional Brownian motion with covariance matrixΛ.

Assumption 3.2 For all sequences βT in a T −1/2-neighborhood of zero,

−T −1Σ[Tr ]
t=1

∂2`t (βT )

∂β2 →p rΣ.

These high-level assumptions would follow from conventional regularity conditions in correctly speci-

fied parametric models. In misspecified models, the assumptions require that the pseudo-true parame-

ter sequence β0,T is related to the distribution of the data in a smooth way.

To gain intuition for the results to follow, consider the case where the parametric model with conditional

likelihood f (yt |xt ,β) is correctly specified. Then, under standard regularity conditions, Assumptions 3.1
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and 3.2 will hold with Λ = Σ. Furthermore, the model will be locally asymptotically normal (LAN), and

possess a limit experiment representation (see for example van der Vaart 1998, Chs. 7-9). In particular,

consider any estimator sequence β̃ with limiting distributions in the sense that

T 1/2β̃→d Lb ,

where the limit is taken under the drifting sequences of measures corresponding to β0,T = T −1/2b, and

Lb is a law that may depend on b. Then the estimator β̃ has an asymptotic representation as a random-

ized estimator in a shifted normal model: if Y is a single draw from the N (Σb,Σ) distribution, and U

is random variable independent of Y (with sufficiently rich support3), there exists an estimator S(Y ,U )

with

S(Y ,U ) ∼Lb

for all b. In other words, the sequence T 1/2β̃ is asymptotically equivalent to the randomized estimator S

under all values of the local parameter.

We extend this type of asymptotic representation, in terms of an asymptotically sufficient component

and an independent randomization, to the pseudo-likelihood setup. We do this by establishing a large-

sample representation of the partial sum process for the score function that corresponds to the (Y ,U )

limit experiments in parametric LAN models.

From Assumptions 3.1 and 3.2, it follows that:

T −1/2Σ[Tr ]
t=1

∂`t (0)

∂β
→d B(r )+ rΣb =: Y (r )

Thus the partial sums of the score function evaluated at β= 0 converge to a Brownian motion with linear

drift. By a standard argument, we can decompose this process into the sum of a normal random vector

and a Brownian bridge:

3Typically, a representation S(Y ,U ) exists for U distributed uniform on [0,1], but for our results below, it is useful to allow U
to have a more general form.
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Proposition 3.3 Under Assumptions 3.1 and 3.2,

T −1/2Σ[Tr ]
t=1

∂`t (0)

∂β
→d Y (r ) = r Y +UB (r ),

where Y := Y (1) ∼ N (Σb,Λ), and UB (r ) is a k-dimensional Brownian bridge with covariance matrix Λ,

where UB is independent of Y .

All proofs are given in Appendix A. This result decomposes the limit of the partial sums of the score

function into two stochastic components, one of which depends on the local parameter b and one of

which is ancillary.

Let Σ(m) denote the k × k matrix that consists of the elements of Σ in the rows and columns indexed

by m and zeros in all other locations, and let H(m) denote the Moore-Penrose generalized inverse of

Σ(m). Then T 1/2β̂→d Σ
−1Y (1) and T 1/2β̂(m) →d H(m)Y (1,m), where Y (r,m) denotes the k ×1 vector

with the elements of Y (r ) in the locations indexed by m and zeros elsewhere. This leads to the following

asymptotic characterizations of the procedures:

Proposition 3.4 Under Assumptions 3.1 and 3.2, we have the following limiting representations of the

parameter estimation procedures:

(i) Using unrestricted MLE:

T 1/2β̂→d Σ
−1Y (1) (3.1)

(ii) Using the positive-part James-Stein estimator:

T 1/2β̃→d Σ
−1Y (1)max(1− k −2

Y (1)′Σ−2Y (1)
,0) (3.2)

(iii) Selecting the model using the AIC:

T 1/2β̃→d

∑
m∗

H(m∗)Y (1,m∗)1{m∗ = argmax
m

[Y (1,m)′H(m)Y (1,m)−2n(m)]} (3.3)

(iv) Selecting the model minimizing recursive out-of-sample error starting a fraction π of the way through
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the sample:

T 1/2β̃→d

∑
m∗

H(m∗)Y (1,m∗)1{m∗ = argmax
m

[2
∫ 1

π

Y (r,m)′

r
H(m)dY (r )

−
∫ 1

π

Y (r,m)′

r
H(m)

Y (r,m)

r
dr ]} (3.4)

(v) Using the split-sample method, using the first fraction π of the sample for model selection and the rest

for parameter estimation:

T 1/2β̃→d

∑
m∗

H(m∗)
Y (1,m∗)−Y (π,m∗)

1−π 1{m∗ = argmax
m

[
1

π
Y (π,m)′H(m)Y (π,m)−2n(m)]} (3.5)

where
∑

m∗ denotes the summation over all the models in M .

Of course, there are other criteria besides AIC that we could use for in-sample model selection. Some

of these are asymptotically equivalent to AIC, such as Mallows’ Cp criterion (Mallows, 1973) or leave-

one-out cross-validation. Using any of these information criteria for in-sample model selection will give

the same asymptotic distribution as in equation (3.3). Alternatively, one could use the Bayes information

criterion (BIC). In the present setting, because the penalty term goes to zero at a rate slower than T −1, the

BIC will pick the small model (β= 0) with probability converging to one. Part (iv) of the proposition can

immediately be adapted to selecting the model minimizing out-of-sample error with a rolling estimation

window, as long as the estimation window contains a fixed fraction of the sample size, but not if it instead

contains a fixed number of observations as in Giacomini and White (2006).

Inoue and Kilian (2004) considered the local power of some in-sample and out-of-sample tests of the

hypothesis that β= 0. They derived equation (3.1) and a result very similar to equation (3.4).

3.1 Rao-Blackwellization

The estimators other than the out-of-sample and split-sample estimators can be viewed as generalized

shrinkage estimators (Stock and Watson, 2012) as their limiting distributions are of the form: T 1/2β̃→d

Y g (Y ) for some nonlinear function g (Y ). In contrast, the limiting distributions in equations (3.4) and

(3.5) are functions of both Y and an independent Brownian bridge, UB (r ). Thus the out-of-sample and
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split-sample estimators are not shrinkage estimators asymptotically, and their representation in terms

of Y = Y (1) and U =UB suggests a way to improve them.

In the statistical experiment of observing the pair (Y ,U ), where Y ∼ N (Σb,Λ) and U is ancillary, the

variable Y is sufficient. Thus, for any estimator S(Y ,U ), consider its conditional expectation

S̃(Y ) := E [S(Y ,U )|Y ]. (3.6)

By the Rao-Blackwell theorem, the risk of S̃(Y ) is less than or equal to that of S(Y ,U ) for all b and for any

convex loss function.

To implement the conditional estimators, we need consistent estimators Λ̂→p Λ and Σ̂→p Σ. Depen-

dence in the scores poses no problem, so long as Λ̂ is a consistent estimate of the zero-frequency spectral

density. Recall that T 1/2β̂(m) →d H(m)Y (1,m). Then take L independent artificially generated Brown-

ian bridges {U i
B (r )}L

i=1 with covariance matrix Λ̂. For each i , consider the estimators:

β̃i ,1 =
∑
m∗
β̂(m∗)1{m∗ = argmax

m
[−

∫ 1

π
[T 1/2β̂(m)+ Ĥ(m)

U i
B (r,m)

r
]′Σ̂[T 1/2β̂(m)+ Ĥ(m)

U i
B (r,m)

r
]dr

+2
∫ 1

π
[T 1/2β̂(m)+ Ĥ(m)

U i
B (r,m)

r
]′Σ̂T 1/2β̂dr +2

∫ 1

π
[T 1/2β̂(m)+ Ĥ(m)

U i
B (r,m)

r
]′dU i

B (r )]}

and

β̃i ,2 =
∑
m∗

[β̂(1,m∗)−T −1/2
U i

b(π,m∗)

1−π ]

1{m∗ = argmax
m

[
1

π
[T 1/2πβ̂(m)+ Ĥ(m)U i

B (π,m)]′Σ̂[T 1/2πβ̂(m)+ Ĥ(m)U i
B (π,m)]−2n(m)]}

where Ĥ(m) is the Moore-Penrose inverse of Σ̂(m) and U i
B (r,m) is the vector with the elements of U i

B (r )

in the locations indexed by m and zeros everywhere else. The next proposition gives their limiting dis-

tributions:
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Proposition 3.5 For each i :

T 1/2β̃i ,1 →d

∑
m∗

H(m∗)Ỹi (1,m∗)1{m∗ = argmax
m

[−
∫ 1

π

Ỹi (r,m)′

r
H(m)

Ỹi (r,m)

r
dr

+2
∫ 1

π

Ỹi (r,m)′

r
H(m)dỸi (r )]}

and

T 1/2β̃i ,2 →d

∑
m∗

H(m∗)
Ỹi (1,m∗)− Ỹi (π,m∗)

1−π 1{m∗ = argmax
m

[
1

π
Ỹi (π,m)′H(m)Ỹi (π,m)−2n(m)]}

where Ỹi (r ) = r Y +U i
B (r ) and Ỹi (r,m) is a k ×1 vector with the elements of Ỹi (r ) in the locations indexed

by m and zeros elsewhere. These are the same distributions as in equations (3.4) and (3.5).

These estimators can then be averaged over i . After this step of averaging over different realizations

of the Brownian bridge, the asymptotic distributions depend on Y alone and are asymptotically the

expectations of the out-of-sample and split-sample estimators conditional on Y . Note that this Rao-

Blackwellization (henceforth, RB) does not apply to the in-sample estimator because there is no ancillary

noise process to eliminate in this case.

In the special case of regression considered in Subsection 2.1, numerical calculations indicate that the

limiting risk of the RB estimator is strictly lower than the original estimator for at least some values of b,

implying that the out-of-sample and split-sample estimators are asymptotically inadmissible.

3.2 Linear Regression Model and Bagging

In the special case of the regression model with orthonormal regressors, considered in Subsection 2.1,

we have Λ= Σ=σ−2Ik . In this model, all of the estimators depend crucially on the partial sum process

T −1/2Σ[Tr ]
t=1 xt yt and it follows from Proposition 3.3 that:

T −1/2σ−2Σ[Tr ]
t=1 xt yt →d Y (r )

and Proposition 3.4 will immediately apply.
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In the linear regression model (subsection 2.1), we can also consider adding a bagging step to each of

the procedures. Bagging, or bootstrap aggregation, was proposed by Breiman (1996) as a way to smooth

predictive procedures. Bühlmann and Yu (2002) study the large-sample properties of bagging. The i th

bagging step resamples from the pairs {(xt , yt ), t = 1, . . . ,T } with replacement to form a pseudo-sample

{x∗
t (i ), y∗

t (i ), t = 1, . . . ,T }. The full model-selection and estimation procedure is then applied to the i th

bootstrap sample. This is repeated L times, and the L estimates are averaged to obtain the bagged esti-

mate that can be used for forecasting. The following proposition provides a key result for obtaining the

limiting distribution of a single bootstrap sample.

Proposition 3.6 Let {x∗
t (i ), y∗

t (i ), t = 1, . . . ,T } be the i th bootstrap sample. In large samples

T −1/2σ−2Σ[Tr ]
t=1 x∗

t (i )y∗
t (i ) →d r Y +Vi (r ) =: Y ∗

i (r ),

where Y is as in Proposition 3.3 and {Vi (r )}L
i=1 are k ×1 Brownian motions with covariance matrix σ−2I

that are independent of Y and of each other.

Thus the limiting distribution of a single bootstrap draw for the partial sums process mimics the result in

Proposition 3.3, except that the Brownian bridge UB (r ) is replaced with a Brownian motion Vi (r ). Using

Proposition 3.6, we can obtain asymptotic representations for a single bootstrap draw of the different

procedures in analogy with (3.1)-(3.5):

Proposition 3.7 In the i th bootstrap sample (i = 1, . . . ,L), in large samples, the distributions of the alter-

native parameter estimates including a bagging step are as follows:

(i) Using unrestricted MLE:

T 1/2β̃i →d Σ
−1Y ∗

i (1) (3.7)

(ii) Using the positive-part James-Stein estimator:

T 1/2β̃i →d Σ
−1Y ∗

i (1)max(1− k −2

Y ∗
i (1)′Σ−2Y ∗

i (1)
,0) (3.8)
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(iii) Selecting the model using the AIC:

T 1/2β̃i →d

∑
m∗

H(m∗)Y ∗
i (1,m∗)1{m∗ = argmax

m
[Y ∗

i (1,m)′H(m)Y ∗
i (1,m)−2n(m)]} (3.9)

(iv) Selecting the model minimizing out-of-sample error:

T 1/2β̃i →d

∑
m∗

H(m∗)Y ∗
i (1,m∗)1{m∗ = argmax

m
[2

∫ 1

π

Y ∗
i (r,m)′

r
H(m)dY ∗

i (r )

−
∫ 1

π

Y ∗
i (r,m)′

r
H(m)

Y ∗
i (r,m)

r
dr ]} (3.10)

(v) Using the split-sample method:

T 1/2β̃i →d

∑
m∗

H(m∗)
Y ∗

i (1,m∗)−Y ∗
i (π,m∗)

1−π 1{m∗ = argmax
m

[
1

π
Y ∗

i (π,m)′H(m)Y ∗
i (π,m)

−2n(m)]} (3.11)

where
∑

m∗ denotes the summation over all the models in M and Y ∗
i (r,m) is a k×1 vector with the elements

of Y ∗
i (r ) in the locations indexed by m and zeros elsewhere.

The distribution of the parameter estimates from bagging are then given by averaging the expressions

in equations (3.7)–(3.11) over L different draws of Vi (r ). In Appendix B, we also provide more concrete

expressions for the in-sample and split-sample procedures, in their standard form, with RB, and with

bagging, in the special case where k = 1.

For all of the bagged procedures characterized in Proposition 3.7, averaging over the L draws for Vi (r )

implies that their limiting distributions depend on Y alone. In the case of the big model (the full OLS

estimator), integrating over Vi (r ) leads to the same limit as the original OLS estimator without bagging,

and the inclusion of the bagging step is asymptotically irrelevant. However, for the other procedures,

bagging changes their asymptotic distributions. In the case of the out-of-sample and split-sample pro-

cedures, bagging results in limiting distributions that do not depend on random elements other than

Y . This suggests that bagging may be particularly effective in improving the risk properties of these

procedures.
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Bagging and our proposed RB procedure are closely related. RB uses simulation to integrate out the

Brownian bridge UB (r ). Bagging is asymptotically equivalent to replacing the Brownian bridge with a

Brownian motion, and then integrating it out. Our RB approach can be used in any setting where we

have consistent estimators ofΛ and Σ, and does not require resampling the data. For this reason, it may

be especially attractive when the data are dependent. Breiman (1996) gave a heuristic argument for why

bagging weakly reduces mean square error, but in fact bagging can increase mean square error. The

calculations of Bühlmann and Yu (2002) showed this for the case of estimation with AIC model selection.

See also Andreas and Stuetzle (2000) and Friedman and Hall (2007). On the other hand RB does indeed

weakly reduce the local asymptotic risk for convex loss functions.

Because RB involves directly integrating out UB (r ), it does not affect any procedure that does not de-

pend on this ancillary noise (because UB (1) = 1 full sample procedures won’t depend on this noise). In

particular, RB does not affect in-sample model selection with AIC. Bagging is different. Bagging replaces

UB (r ) with a Brownian motion and then integrates that out. But this affects the limiting distribution of

all of the procedures that we consider, except for the unrestricted MLE. Bagging affects in-sample model

selection with AIC, where it can be thought of as replacing hard thresholding with soft thresholding (see

Appendix B for more discussion).

4 Extensions

In this section, we consider two extensions of the basic framework of our analysis, in the context of the

linear regression model.

4.1 Unmodeled Structural Change

A variant of our basic regression model specifies that yt = β′
t xt +ut where T 1/2β[Tr ] = W (r ), where r

may be either a stochastic or nonstochastic process. This allows various forms of structural breaks, and

is similar to specifications used by Andrews (1993) and Elliott and Mueller (2014). For example, if βt =
T −1/2b +T −1/2b̃1(t > [Ts]), then W (r ) = b + b̃1(r > s). Or, if βt = T −1Σt

s=1ηs with Gaussian shocks, then

W (r ) is a Brownian motion. Proposition 4.1 gives the asymptotic distribution of the partial sum process
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T −1/2σ−2Σ[Tr ]
t=1 xt yt in this variant of our basic model:

Proposition 4.1 As T →∞, the partial sum process

T −1/2σ−2
[Tr ]∑
t=1

xt yt →d Z (r )

where Z (r )
d=Σ∫ r

0 W (s)d s+rξ+UB (r ) , ξ∼ N (0,Σ) and UB (r ) is an independent k-dimensional Brownian

bridge with covariance matrix Σ=σ−2I .

Suppose that the researcher ignores the possibility of structural change, and simply uses the available

estimators for forecasting. The limiting distributions of the estimators will be as in Propositions 3.4

and 3.7, with Y (r ) replaced by Z (r ) and Y ∗
i (r ) replaced by r Z (1) +σVi (r ) everywhere. Alternatively,

the researcher might be aware of the possibility of structural change, and might choose to select among

models and estimate parameters using a rolling window. The estimators will then have limiting distribu-

tions that are simple extensions of those in Propositions 3.4 and 3.7. Other approaches for dealing with

the possibility of parameter instability might be considered, but we leave this topic for future research.

4.2 Model Combination

It may also be appealing to combine forecasts made from multiple models, instead of selecting a sin-

gle model (Bates and Granger (1969) and Timmermann (2006)). Recalling that β̂(1,m) denotes the pa-

rameter estimate from the model containing the variables indexed by m (with zeros in other locations),

then we could estimate the parameter vector as Σm w(m)β̂(1,m), where Σm denotes the sum over all

the models in M and the weights sum to 1. As examples of weighting schemes, we could set w(m) =
exp(AIC (m)/2)

Σm∗ exp(AIC (m∗)/2) (Buckland, Burnham, and Augustin, 1997) or wi = exp(−σ̂2(m))
Σm∗ exp(−σ̂2(m∗)) where AIC (m) and

σ̂2(m) denote the Akaike Information Criterion and out-of-sample mean of squared residuals in the

model indexed by m. Alternatively, to do a combination version of the split-sample scheme, we could

estimate the parameter vector as Σm w(m)β̂∗(π,m) where w(m) = exp(AIC (π,m)/2)
Σm exp(AIC (π,m)/2) and AIC (π,m) de-

notes the Akaike Information Criterion for the model indexed by m computed only over the first fraction

π of the sample.
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Proposition 4.2 If the parameter vector is estimated by Σm w(m)β̂(1,m) then in large samples, the distri-

butions of the alternative parameter estimates will be:

σ2E {Σm w(m)H(m)Y (1,m)}

where

w(m) ∝ exp([Y (1,m)′H(m)Y (1,m)−2n(m)]/2)

or

w(m) ∝ exp(−[
∫ 1

π

Y (r,m)′

r
H(m)

Y (r,m)

r
dr −2

∫ 1

π

Y (r,m)′

r
H(m)dY (r )])

for exponential AIC and mean square prediction error weights, respectively. Meanwhile, if the parameter

vector is instead estimated by Σm w(m)β̂∗(π,m) with exponential AIC weights, then in large samples, the

distribution of the estimator will be:

σ2E {Σm∗w(m)H(m)
Y (1,m)−Y (π,m)

1−π }

where

w(m) ∝ exp([
1

π
Y (π,m)′H(m)Y (π,m)−2n(m)]/2)

The standard bagging step can be added to any of these methods for forecast combination and the re-

sulting limiting distributions in the i th of L bootstrap samples are also given by Proposition 4.2, except

with Y (·) and Y (·,m) replaced by Y ∗
i (·) and Y ∗

i (·,m) everywhere. Or RB can be added, and Proposition

4.2 would still apply, except with Y (·) and Y (·,m) replaced by Ỹi (·) and Ỹi (·,m).

An alternative and more standard way to obtain combination weights for the out-of-sample forecasting

scheme would be to weight the forecasts by the inverse mean square error (Bates and Granger (1969)

and Timmermann (2006)). Under our local asymptotics, this will give each model equal weight in large

samples.

18



5 Numerical Work

In this section we numerically explore the root mean squared error

√
E

[
(T 1/2β̃−b)′(T 1/2β̃−b)

]
, (5.1)

the square of which is asymptotically equivalent to the NMSPE in the regression model example. Given

the expressions in Propositions 3.4 and 3.7, we can simulate the asymptotic risk of different methods in

their standard form, with RB, and with bagging4 for different choices of the localization parameter b and

the number of potential predictors k. None of the methods gives the lowest risk uniformly in b. Always

using the big model is minmax, but due to the Stein phenomenon, it may be dominated by shrinkage

estimators. In all cases, RB and bagging are implemented using 100 replications, the out-of-sample and

split-sample methods both setπ= 0.5, and we setΣ=Λ= Ik . The asymptotic risk is symmetric in b and is

consequently shown only for non-negative b. The bagging results from Proposition 3.7 apply only in the

special case of the linear regression model, but RB applies in the general pseudo-likelihood framework.

Figure 1 plots the asymptotic risk of the standard in-sample, out-of-sample and split-sample methods,

for the case k = 1 against b. Results with RB and bagging are also included.

Among the standard methods, selecting the model in-sample by AIC does better than the out-of-sample

scheme for most values of b, which in turn dominates the split-sample method. But RB changes this

ordering. RB reduces the risk of the out-of-sample and split-sample methods for all values of b, and

makes them much more competitive. Bagging accomplishes much the same thing. The fact that bagging

improves the out-of-sample and split-sample methods uniformly in b is just a numerical result, but it is

also a theoretical result for RB. Neither bagging nor RB dominates the other in terms of risk. Bagging

also helps with the in-sample method for some but not all values of b—this was also shown by Bühlmann

and Yu (2002). Recall that RB does nothing to the in-sample method.

Among all the prediction methods represented in Figure 1, which one the researcher would ultimately

would want to use depends on b, which is in turn not consistently estimable. But the split-sample and

out-of-sample methods do best for many values of the localization parameter, as long as the bagging or

RB step is included. Indeed, for all b, the best forecast is some method combined with bagging or RB.

4The results with bagging are based on Proposition 3.7, which applies only in the case of the linear regression model.
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We next consider the case where the number of potential predictors k is larger, but only one parameter

actually takes on a nonzero value. (Of course, the researcher does not know this.) Without loss of gen-

erality, we let the nonzero element of b be the first element and so specify that b = (b1,0, . . . ,0)′. Figure

2 plots the risk for k = 3 against b1 for in-sample, out-of-sample and split-sample methods in the stan-

dard form, with RB, and with bagging. The positive-part James-Stein estimator is also included. The

split-sample method with either RB or bagging compares very favorably with the other alternatives.

We next consider the case with multiple potential predictors, but where the associated coefficients are all

equal. We specify that b = b1k−1/2i where i denotes a k×1 vector of ones. Figure 3 plots the risk for k = 3

against b1 for the different procedures. Again RB and bagging help the split-sample and out-of-sample

methods a good deal.

We finally consider the case where b has k elements and we do a grid search over k̄ of these elements,

setting the remaining elements to zero. As this is done by grid search, it is only feasible for k̄ = 1,2. In

Table 1, we list the cases in which one method dominates another one uniformly over the nonzero ele-

ments of b in terms of risk for various pairs of possible forecasting methods. We find that in all cases, the,

out-of-sample forecasts with RB or bagging dominate those without. For the bagging, this is a numerical

result, but for RB it is a theoretical one, as discussed above. In this sense, one should never use the

conventional out-of-sample forecasting methodology without some risk-reduction scheme to integrate

out noise.

In Table 1, if k ≥ 5 and k̄ = 1 then the split-sample scheme with bagging or RB dominates in-sample

forecasting (with or without bagging), the maximum-likelihood estimator and the James-Stein estimator.

Thus it seems that the split-sample forecasting scheme with bagging or RB does best if the model is

sparse—there are multiple coefficients, most of which are equal to zero. The out-of-sample scheme with

RB dominates in-sample forecasting (with or without bagging) and the maximum-likelihood estimator

if k ≥ 4 and k̄ = 1.

Figure 4 plots the risk for k = 1 against b for the in-sample, out-of-sample and split-sample forecast

combination methods, in their standard form, with RB and with bagging. These are based on simulating

the distributions in Proposition 4.2. The combination forecasts are generally better than forecasts based

on selecting an individual model. Nonetheless, with combined forecasts as with individual forecasts, in
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the absence of a randomization step, using in-sample AIC weights does best for most values of b. Adding

in RB/bagging allows better predictions to be made. RB/bagging reduces the risk of the combination

forecasts with out-of-sample or split-sample weights uniformly in b. Once an RB/bagging step is added

in, there is no clear winner among the in-sample, out-of-sample and split-sample forecast combination

methods.

6 Monte Carlo Simulations

The results in the previous section are based on a local asymptotic sequence. The motivation for this is

to provide a good approximation to the finite sample properties of different forecasting methods while

retaining some assurance that they are not an artifact of a specific simulation design. As some check

that the local asymptotics are indeed relevant to small samples, we did a small simulation consisting

of equation (2.1) with standard normal errors, independent standard normal regressors, a sample size

T = 100, and different values of k. In each simulation we drew T +1 observations on yt and xt , used the

first T for model selection and parameter estimation according to one of the methods discussed above.

Then given xT+1, we worked out the prediction for yT+1, and computed the mean square prediction error

(MSPE).

Figure 5 plots the simulated root normalized mean square prediction errors (
p

T ∗ (MSPE −1)) against

β for k = 1. Figure 6 and 7 repeat this for k = 3 where β= (β1,0,0)′ and β= β1k−1/2i , respectively, with

the results plotted against β1. In our simulations, we include bagging and RB of the out-of-sample and

split-sample forecasts. Our simulation also included results using leave-one-out cross-validation, but

these were not surprisingly very close to the in-sample fit with the AIC, and so are omitted from FIgures

5-7.

Figures 5-7 give very similar conclusions to the local asymptotic calculations reported in Figures 1-3.

Without RB or bagging, the in-sample scheme generally gives the best forecasts, followed by out-of-

sample, with the split-sample doing the worst. RB or bagging substantially improve the performance

of the out-of-sample and split sample methods. In Figure 6, there are many values of β1 for which the

split-sample method with RB or bagging does best among all the model selection methods considered.
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7 Conclusion

When forecasting using k potential predictors, each of which has a coefficient that is local to zero, there

are several competing methods, none of which is most accurate uniformly in the localization parame-

ter. Optimizing the in-sample fit, as measured by the Akaike information criterion, generally does better

than out-of-sample or split-sample methods. However, the out-of-sample and split-sample methods

can be improved substantially by removing the impact of an ancillary noise term that appears in their

limit representations, either through Rao-Blackwellization or bagging. For important ranges of the local

parameters, these modified procedures are very competitive with in-sample methods. Our represen-

tation results highlight a noise-reduction aspect of bagging, and also leads to an alternative approach

that dominates the out-of-sample and split-sample methods asymptotically and can be implemented

without having to resample the data.
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Appendix A: Proof of Propositions

Proof of Proposition 3.3: We have

T −1/2
[Tr ]∑
t=1

∂`t (0)

∂β
= T −1/2

[Tr ]∑
t=1

∂`t (β0)

∂β
−T −1/2

[Tr ]∑
t=1

∂2`t (β0)

∂β2 β0 +op (1)

→d rΣb +B(r ),

where B(r ) denotes a Brownian motion with covariance matrixΛ. Let Y (r ) = rΣb+B(r ), and let Y = Y (1)

which is N (Σb,Λ). Define UB = B(r )− r B(1). Then by a standard construction of the Brownian bridge

process,

Y (r ) = rΣb +B(r )

= rΣb + r B(1)+B(r )− r B(1) = r Y +UB (r ). ■

Proof of Proposition 3.4: Let β̂(m) denote the vector of coefficient estimates corresponding to the pre-

dictors indexed by m with zeros in all other locations. Equations (3.1) and (3.2) immediately follow be-

cause T 1/2β̂→d Y .

The AIC objective function (to be maximized) is:

2ΣT
t=1lt (β̂(m))−2n(m) = 2ΣT

t=1lt (0)+2β̂(m)′
∂lt (yt ,0)

∂β
+ β̂(m)′ΣT

t=1
∂2lt (yt ,0)

∂β2 β̂(m)−2n(m)+op (1)

which is asymptotically the same, up to the same affine transformation across all models, as

Y (1,m)′H(m)Y (1,m)−2n(m),

noting that H(m)ΣH(m) = H(m).
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The OOS objective function (to be maximized) is:

ΣT
t=[Tπ]+1lt (β̂1,t−1(m)) =ΣT

t=[Tπ]+1[lt (0)+ β̂1,t−1(m)′
∂lt (yt ,0)

∂β

+1

2
β̂1,t−1(m)′

∂2lt (yt ,0)

∂β2 β̂1,t−1(m)]+op (1)

which is asymptotically the same, up to the same affine transformation across all models, as

2
∫ 1
π

Y (r,m)′
r H(m)dY (r )−∫ 1

π
Y (r,m)′

r H(m) Y (r,m)
r dr

The AIC estimated over the first fraction π of the sample is:

2ΣT
t=1lt (β̂1,[Tπ](m))−2n(m) = 2ΣT

t=1lt (0)

+2β̂1,[Tπ](m)′
∂lt (yt ,0)

∂β
+ β̂1,[Tπ](m)′ΣT

t=1
∂2lt (yt ,0)

∂β2 β̂1,[Tπ](m)−2n(m)+op (1)

which is asymptotically the same, up to the same affine transformation across all models, as

1
πY (π,m)′H(m)Y (π,m)−2n(m)

The limiting distributions in Proposition 3.4 all follow from these results and the facts that T 1/2β̂ →d

Σ−1Y (1) and T 1/2β̂(m) →d H(m)Y (1,m). ■

Proof of Proposition 3.5: We know that T 1/2β̂(m) →d H(m)Ỹi (1,m) and Ĥ(m) →p H(m). Hence T 1/2β̂(m)+
Ĥ(m)

U i
B (r,m)

r →d H(m) Ỹi (r,m)
r . The result follows immediately. ■

Proof of Proposition 3.6: Let {x∗
t (i ), y∗

t (i )} be the i th bootstrap sample and let u∗
t (i ) = y∗

t (i )−β′x∗
t (i ),

t = 1, ...T . From Theorem 2.2 of Park (2002), T −1/2σ−2 ∑[Tr ]
t=1 (x∗

t (i )u∗
t (i )−T −1 ∑T

s=1 xsus) →d Vi (r ). Con-

sequently T −1/2σ−2Σ[Tr ]
t=1 x∗

t (i )y∗
t (i ) →d r Y +Vi (r ). ■

The proofs of Propositions 3.7 and 4.2 involve exactly the same calculations as in Proposition 3.4 and are

hence omitted.
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Proof of Proposition 4.1: We have

T −1/2σ−2
[Tr ]∑
t=1

xt yt = T −1/2σ−2
[Tr ]∑
t=1

xt x ′
tβt +T −1/2σ−2

[Tr ]∑
t=1

xt ut

= T −3/2σ−2
[Tr ]∑
t=1

xt x ′
tΣ

t
s=1ηs +T −1/2σ−2

[Tr ]∑
t=1

xt ut

→d σηΣ

∫ r

0
W (s)d s +B(r ) =σηΣ

∫ r

0
W (s)d s + rξ+UB (r ).

where B(r ) is a Brownian motion with covariance matrixΛ. ■
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Appendix B: Shrinkage Representations in the case k = 1

In the case k = 1, and with Σ=Λ, some of the expressions in Propositions 3.4 and 3.7 can be simplified.

For the AIC estimator in its standard form we have:

T 1/2β̃→d Σ
−1Y 1(|Y | >

p
2Σ). (B1)

For the split-sample estimator, we have:

T 1/2β̃→d Σ
−1z11(|z2| >

√
2Σ

π
),

where z1 = Y − UB (π)
1−π and z2 = Y + UB (π)

π . By direct calculations, z1 is N (Σb, 1
1−πΣ), z2 is N (Σb, 1

πΣ) and z1

and z2 are mutually independent.

Rao-Blackwellization makes no difference to the AIC estimator, and equation (B1) continues to apply.

For the split-sample estimator in the i th simulated sample, we have:

T 1/2β̃i →d Σ
−1(Y −

√
πΣ

1−π z(i ))1(|Y +
√

(1−π)Σ

π
z(i )| >

√
2Σ

π
) = (Σ−1Y −γz(i ))1(|γY + z(i )| >

√
2

1−π ),

where z(i ) is N (0,1), and is independent of Y and γ =
√

π
(1−π)Σ . Thus for the overall split-sample esti-

mator with RB, we have:

T 1/2β̃→d Σ
−1{Y −YΦ(

√
2

1−π −γY )−γφ(

√
2

1−π −γY )+YΦ(−
√

2

1−π −γY )+γφ(

√
2

1−π −γY )}.

For the AIC estimator, with bagging, we have:

T 1/2β̃→d Σ
−1{Y −YΦ(

p
2−κY )+κφ(

p
2−κY )+YΦ(−p2−κY )−κφ(−p2−κY )},

where κ = Σ−1/2, shown in proposition 2.2 of Bühlmann and Yu (2002).5 Comparing this to equation

5Indeed, given the orthonormal setting, even if k > 1, if we sort the coefficient estimates by their absolute magnitude and
apply AIC sequentially to these models, dropping variables one at a time as long as called for by the information criterion, then
the above two expressions will apply to each element of β̃−β (Bühlmann and Yu, 2002; Stock and Watson, 2012). But the use of
the AIC that we are considering in this paper is to select among all 2k possible models and so no such simplification is available
in this case.
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(B1), in the context of the AIC estimator, bagging is effectively replacing a hard thresholding procedure

with a soft thresholding counterpart.

Meanwhile, for bagging the split-sample estimator in the i th bootstrap sample, we have:

T 1/2β̃i →d z1(i )1(|z2(i )| >
√

2Σ

π
)

where z1(i ) = Y + Vi (1)−Vi (π)
1−π and z2(i ) = Y + Vi (π)

π . By direct calculations, z1(i )|Y is N (Y , Σ
(1−π) ), z2(i )|Y is

N (Y , Σπ ) and the two are independent, conditional on Y . Thus for the overall split-sample with bagging

estimator:

T 1/2β̃→d Σ
−1{Y −YΦ(

p
2−

√
π

Σ
Y )+YΦ(−p2−

√
π

Σ
Y )}.

We have no such simplified expression for the out-of-sample estimators, but we still know from equa-

tions (3.4) and (3.10) that the limits of the out-of-sample estimators with RB and bagging are both func-

tions of Y alone.
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Figure 1: Local Asymptotic Risk (k = 1)
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Notes: These are the simulated local asymptotic risk values, equation (5.1), for different procedures, plotted against b.
Note that MLE is the same without any resampling, with bagging or with Rao-Blackwellization. AIC is the same without
any resampling or with Rao-Blackwellization.
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Figure 2: Local Asymptotic Risk (k = 3, Single Nonzero Coefficient)

0 2 4 6

0.5

1

1.5

2

b
1

No resampling

 

 

James Stein

AIC

OOS

Split Sample

MLE

0 2 4 6

0.5

1

1.5

2

b
1

Bagging

0 2 4 6

0.5

1

1.5

2

b
1

Rao-Blackwellization

Notes: These are the simulated local asymptotic risk values, equation (5.1), for different procedures, plotted against
b1, where b = (b1,0, . . . ,0)′. Note that MLE is the same without any resampling, with bagging or with Rao-Blackwellization.
AIC is the same without any resampling or with Rao-Blackwellization.
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Figure 3: Local Asymptotic Risk (k = 3, All Coefficients Equal)
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Notes: These are the simulated local asymptotic risk values, equation (5.1), for different procedures, plotted against
b1, where b = b1k−1/2i . Note that MLE is the same without any resampling, with bagging or with Rao-Blackwellization.
AIC is the same without any resampling or with Rao-Blackwellization.
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Figure 4: Local Asymptotic Risk: Combination Forecasts (k = 1)
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Notes: These are the simulated local asymptotic risk values, equation (5.1), for different procedures, plotted against b.
Note that MLE is the same without any resampling, with bagging or with Rao-Blackwellization. Exponential AIC forecast
combination is the same without any resampling or with Rao-Blackwellization.
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Figure 5: Root Normalized Mean Square Prediction Errors (k = 1)
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Notes: These are the simulated root normalized mean square prediction errors using different procedures, plotted
against β. There is one possible predictor and the sample size is T = 100. Note that MLE is the same without any resam-
pling, with bagging or with Rao-Blackwellization. AIC is the same without any resampling or with Rao-Blackwellization.
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Figure 6: Root Normalized Mean Square Prediction Errors (k = 3, Single Nonzero Coefficient)
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Notes: These are the simulated root normalized mean square prediction errors using different procedures, where β=
(β1,0,0)′ , plotted against β1. The sample size is T = 100. Note that MLE is the same without any resampling, with bagging
or with Rao-Blackwellization. AIC is the same without any resampling or with Rao-Blackwellization.
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Figure 7: Root Normalized Mean Square Prediction Errors (k = 3, All Coefficients Equal)
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Notes: These are the simulated root normalized mean square prediction errors using different procedures, where β=
β1k−1/2i , plotted against β1. The sample size is T = 100. Note that MLE is the same without any resampling, with bagging
or with Rao-Blackwellization. AIC is the same without any resampling or with Rao-Blackwellization.
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