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Abstract

I show that sharp identified sets in a large class of econometric models can be
characterized by solving linear systems of equations. These linear systems determine
whether, for a given value of a parameter of interest, there exists an admissible joint dis-
tribution of unobservables that can generate the distribution of the observed variables.
The parameter of interest can be a structural function, but it can also be a more com-
plicated feature of the model primitives, such as an average treatment effect. The joint
distribution of unobservables is not required to satisfy any parametric restrictions, but
can (if desired) be assumed to satisfy a variety of location, shape and/or conditional
independence restrictions. To prove that this characterization is sharp, I generalize
a classic lemma in copula theory concerning the extendibility of subcopulas to show
that related objects, termed subdistributions, can be extended to proper distribution
functions. This result is then used to reduce the characterization of the identified set
to the determination of the existence or non-existence of suitably-constrained subdis-
tributions, which in turn is often equivalent to solving a linear system of equations. I
describe this argument as partial identification by extending subdistributions, or PIES.
I apply PIES to an ordered discrete response model and a two-sector Roy model. One
product of the first application is a tractable characterization of the sharp identified
set for the average treatment effect in the semiparametric binary response model con-
sidered by Manski (1975, 1985, 1988).
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1 Introduction

A central and enduring obstacle in partial identification analysis is the difficulty of

obtaining tractable, sharp characterizations of identified sets. Early work on partial

identification approached this problem with a two-step argument. First, bounds for a

given parameter are proposed. Second, the bounds are shown to be sharp by estab-

lishing the existence of an admissible choice of model parameters under which these

bounds are achieved. While this type of argument has provided many useful results for

nonparametric models (e.g., Manski (2003)), it is analytically challenging to apply it to

more complex semiparametric models. In particular, establishing sharpness is difficult

when the relationship between the parameters of the model and the distribution of the

observed data is complicated, and/or when these parameters are assumed to satisfy

many properties. This state of affairs characterizes many desirable semiparametric

generalizations of commonly used fully parametric econometric models. An example

of such a model is an ordered discrete choice model with a linear index function, but

with no parametric distributional assumptions on the unobservable term.

This paper provides a new general procedure for constructing tractable, sharp char-

acterizations of identified sets in semiparametric econometric models such as these. The

method is based on a classic result in copula theory due to Sklar (1959, 1996), which

shows that any subcopula can be extended to a copula. I generalize this result to show

that any L-dimensional subdistribution—i.e. any function with the shape properties of

an L-dimensional distribution function, but defined only on a subset of R
L

—can be

extended to a proper distribution function defined on the entirety of R
L

.1 The main

contribution of this paper to develop an argument that shows how this subdistribution

extension result can be usefully applied to provide tractable, sharp characterizations

of identified sets in a wide variety of econometric models. I refer to this argument

and the computational method that it justifies as partial identification by extending

subdistributions, or PIES.

PIES is intuitive and straightforward to describe. Suppose that an econometric

model can be written as

Y = h(X,U), (1)

where Y is a vector of outcome variables, X is a vector of explanatory variables, U is an

L-dimensional vector of latent variables with conditional distribution U |X = x given by

1Here I am using the standard notation for the extended real number system, R ≡ R∪ {−∞,+∞}, and

its L-fold Cartesian product R
L

.
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F (·|x), and h is the structural function. The researcher maintains certain assumptions

on h and F , with choices of h and F that satisfy these assumptions described as being

admissible. Fix an admissible choice of the structural function h. Then, by definition,

h is in the identified set if and only if there exists an admissible F that generates the

observed distribution of Y |X = x through (1) when the structural function is h and

U |X = x is distributed according to F (·|x) for all supported x.

This requirement of observational equivalence constrains F (·|x) on a subset Ux(h) of

R
L

. Often, Ux(h) is a finite subset of R
L

. The restriction of any F (·|x) to Ux(h) is what

I refer to as a subdistribution, i.e. a function with the shape properties of a distribution

function, but with a domain that may be a strict subset of R
L

. Conversely, suppose that

for each supported x there exists a subdistribution F (·|x) defined on Ux(h) that satisfies

the observational equivalence condition, and which could be the restriction of F (·|x) to

Ux(h) for some admissible F . Then the subdistribution extension result developed in

this paper implies that F (·|x) can be extended to an F (·|x) that produces the observed

distribution of Y |X = x for each supported x, and that F is admissible. Hence, a

given admissible choice of the structural function h is in the identified set if and only

if for each supported x there exists a subdistribution F (·|x) with domain Ux(h) that is

constrained to satisfy the observational equivalence and admissibility conditions. The

existence of such subdistributions therefore provides a sharp characterization of the

identified set of h.

An important practical aspect of this argument is that the shape restrictions that

determine whether a function is a subdistribution are always linear constraints on

the values of that function. In addition, as I illustrate throughout the course of the

paper, observational equivalence conditions tend to be linear (for a given h), and the

restrictions associated with many commonly-used admissibility assumptions are also

linear. In such cases, PIES involves determining the existence of a solution to a system

of linear equations for each value of h.2 This is a tractable computational problem

as long as the linear system of equations is finite. The finiteness of the linear system

depends primarily on the cardinality of the supports of Y and X. If Y and/or X are

continuously distributed, so that the linear system is infinite, PIES can still be used

to construct arbitrarily accurate outer sets by attempting to solve an arbitrarily large

subset of the linear system. As a practical matter, the linear system is always finite for

a given sample of data, since the empirical distribution of (Y,X) is necessarily discrete.

2As another benefit of PIES, one generally does not need to exhaust the entire space of admissible
structural functions to trace out the identified set. This is because knowledge that h is or is not in the
identified set also provides knowledge that any other h′ with the same “ordering” is in the identified set—see
Proposition 2.3.
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A second important feature of PIES is that it can be modified to characterize sharp

identified sets for parameters that depend on both h and F . This is especially important

for nonlinear models, such as discrete choice models, in which causal parameters like

the average treatment effect necessarily depend not only on the structural function

h, but also on the distribution F of the unobservables.3 Treating F as a nuisance

parameter to be eliminated or avoided is not appropriate for these types of models.

I apply PIES to two widely used econometric models. The first is a semiparametric

ordered discrete response model with a linear index function. The explanatory variable

of interest in this model can be either exogenous or endogenous, and there can exist

an instrumental variable that may or may not be related to the endogenous variable

through a first stage equation. No parametric distributional assumptions need to be

made about the latent terms in order to apply PIES. A special case of this model is

the semiparametric binary response model with exogenous regressors considered by

Manski (1975, 1985, 1988). The econometric analysis of such models is sometimes

criticized on the grounds that it only identifies the index coefficients, and not causal

parameters like the average treatment effect.4 Using PIES, I show how to construct

sharp identified sets for the average treatment effect using only Manski’s conditional

median independence assumption, thereby addressing this criticism without imposing

stronger assumptions. I also show how PIES can be used to incorporate the identifying

content of additional distributional shape restrictions, such as symmetry, in an effort

to reduce the size of the identified set for the average treatment effect.

The second model is a two-sector Roy model of the sort considered by Heckman

and Honoré (1990), Heckman and Vytlacil (2005), and Eisenhauer et al. (2015), among

many others. A traditional approach to analyzing such models involves assuming a lin-

ear form for the structural function and placing parametric distributional assumptions

(typically, normality or log-normality) on the latent variables. Heckman and Honoré

(1990) argued that these parametric distributional assumptions are difficult to justify,

and showed that they can be replaced by exogenous variables with extreme variation

(“large support” in the current parlance). However, the existence of large support vari-

ables in actual empirical applications can be dubious. A partial identification approach

recognizes the potential failure of large support, but a tractable, sharp characteriza-

tion of the identified set in a semiparametric Roy model has not (to the best of my

3This point is emphasized in modern textbook treatments of nonlinear models, e.g. Wooldridge (2010).
4For example, Angrist and Pischke (2009, pg. 201) write “. . . some researchers become distracted by

an effort to estimate index coefficients instead of average causal effects. For example, a large literature
in econometrics is concerned with the estimation of index coefficients without the need for distributional
assumptions. Applied researchers interested in causal effects can safely ignore this work.” See also Angrist
(2001).
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knowledge) been provided to date.5 PIES provides a solution to this problem and, in

particular, allows a researcher to construct sharp identified sets for causal parameters

by solving linear programs.

The remainder of the paper is structured as follows. I begin in Section 2 by de-

veloping PIES for the ordered discrete response model. This analysis demonstrates

the key ideas of PIES in a concrete, important and relatively straightforward model.

It also shows how to construct identified sets for several types of empirically relevant

semiparametric ordered discrete response models. I provide simulation evidence that

shows that even under standard data generating processes, the identified sets for index

coefficients in these models can be bizarrely shaped, with disconnected regions and

other unusual non-convexities. In Section 3, I introduce the formal definition of a sub-

distribution, prove the subdistribution extension lemma, discuss the related concepts

of extendibility and reducibility, and apply PIES to a general econometric model. I

also show that the PIES characterization can be rephrased as a conditional moment

equality model, thereby enabling the application of recent results on inference in such

models, such as Andrews and Shi (2013). In Section 4, I show how PIES can be ap-

plied to the two-sector Roy model. Section 5 contains some concluding comments,

including a brief and somewhat speculative comparison of the benefits and drawbacks

of PIES relative to other general methods for characterizing identified sets based on

random set theory (Beresteanu et al. (2011), Galichon and Henry (2011), Chesher and

Rosen (2014a,b), Chesher et al. (2013), Aradillas-Lopez and Rosen (2014)) and entropy

rankings (Schennach, 2014).

2 PIES for Ordered Discrete Response Models

Consider the ordered discrete response model

Y =
J∑
j=1

yj1[gj−1(X) < U ≤ gj(X)], (2)

where Y is an observed discrete random variable with support Y ≡ {y1, . . . , yJ} that

is increasing in j, X is an observed discrete random variable with support X ≡
{x1, . . . , xK}, g ≡ (g0, g1, . . . , gJ) is a vector-valued function, and U is a scalar la-

tent random variable. Let F denote the set of all conditional distribution functions

5Mourifié et al. (2015) have recently derived analytic expressions for identified sets in fully nonpara-
metric two-sector Roy models. The analysis in this paper applies to both nonparametric Roy models and
semiparametric Roy models with parametrically-specified structural functions, but provides a computational
approach rather than analytic expressions.
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F : R × X → [0, 1]. The researcher maintains some non-data identifying assumptions

on g and F . For g, these assumptions might include linearity, exclusion restrictions, or

certain normalizations, while for F they might represent location normalizations on U

and/or the assumption that U and X are independent or median independent. Let G†

and F† respectively denote the set of all functions g and all F ∈ F that satisfy these

assumptions.

To begin the identification analysis, first consider the trivial case in which F† = F ,

i.e. suppose that the set of admissible conditional distribution functions for U |X is

unrestricted. This case is trivial because without any restrictions on F we should

expect completely uninformative identified sets. However, the intuition of the PIES

argument is clearest when beginning with this case. Consider any admissible g ∈ G†.
Then, using standard definitions of identification, g is an element of the identified set,

G?, if and only if there exists a conditional distribution function F : R × X → [0, 1]

such that when U |X = xk is distributed like F (·|xk),

P[Y ≤ yj |X = xk] = P[U ≤ gj(xk)|X = xk] = F (gj(xk)|xk), (OEQ)

for all j and k. This existence question is a complicated one, since conditional distribu-

tion functions are infinite-dimensional objects. Hence, while (OEQ) provides a sharp

characterization of G?, it is not clear how one could use this characterization, since it

is not clear how one could verify or falsify the existence of an infinite-dimensional F

that satisfies (OEQ).

However, closer inspection reveals that determining the existence of an entire condi-

tional distribution F is more difficult than necessary. Observe that for a fixed g, (OEQ)

only constrains a candidate conditional distribution function F at the finite number of

points determined by gj(xk) at different combinations of j and k. Hence, to establish

that a given admissible g is in the identified set, it suffices to show that a function

defined on this finite set of points can be extended to a proper conditional distribution

function defined on the entirety of R. The infinite-dimensional problem can therefore

be turned into a finite-dimensional problem, as long as a suitable extension argument

can be provided. The necessity of the existence of a solution to the finite-dimensional

problem is trivial, since if g ∈ G?, then (OEQ) is satisfied for an infinite-dimensional

object F , and hence is also satisfied by the restriction of F to a finite domain that

includes the points of evaluation in (OEQ).

For the current model, such an extension argument is straightforward, due to the

fact that U is scalar and that F† = F is unrestricted. In particular, suppose that

F (·|xk) is a function with domain {gj(xk)}Jj=0 and range contained in [0, 1], where
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g ∈ G† is arbitrary and fixed. Intuitively, it should be clear that as long as F (·|xk) is

weakly increasing on this finite domain, then it can be extended by interpolation to

a proper distribution function F (·|xk) defined on the entirety of R.6 As an extension

of F (·|xk), this distribution function F (·|xk) satisfies F (gj(xk)|xk) = F (gj(xk)|xk) for

every j. If for each k, F (·|xk) can be chosen to be not only weakly increasing, but also

to satisfy (OEQ) in the sense that

P[Y ≤ yj |X = xk] = F (gj(xk)|xk) ∀j, (3)

then the extensions {F (·|xk) : k ∈ 1, . . . ,K} together comprise a conditional distribu-

tion function F ∈ F that satisfies (OEQ), which implies that g is in the identified set

G?. This observation is formalized in the following proposition.

Proposition 2.1. Fix an admissible g ∈ G†. For each k = 1, . . . ,K, let

Uk(g) ≡ {gj(xk) : j = 0, 1, . . . , J} ∪ {−∞,+∞}. (4)

Then g ∈ G? if and only if for each k = 1, . . . ,K there exists a real-valued function

F (·|xk) with domain Uk(g) such that for every k = 1, . . . ,K

F (gj(xk)|xk) = P[Y ≤ yj |X = xk] for all j = 0, 1, . . . , J , (P1.1)

1 ≥ F (u|xk) ≥ 0 for all u ∈ Uk(g), (P1.2)

F (−∞|xk) = 0, (P1.3)

F (+∞|xk) = 1, (P1.4)

F (u′|xk) ≥ F (u|xk) for all u, u′ ∈ Uk(g) such that u′ ≥ u. (P1.5)

Proof of Proposition 2.1. If g ∈ G? then there exists a conditional distribution

function F : R × X → [0, 1] that satisfies (OEQ) for all j and k. Letting F (u|xk) =

F (u|xk) for each k = 1, . . . ,K and all u ∈ Uk(g), conditions (P1.1)–(P1.5) follow

immediately from (OEQ) and the properties of conditional distribution functions.

Conversely, suppose that g ∈ G† and that for each k = 1, . . . ,K there exists an

F (·|xk) with domain Uk(g) that satisfies (P1.1)–(P1.5). By (P1.1), F (·|xk) satisfies

(OEQ) for all j and k. By (P1.2)–(P1.5) and Lemma 3.2, each F (·|xk) can be extended

to a proper conditional distribution function F (·|xk) that also satisfies (OEQ). Hence

g ∈ G?. Q.E.D.

6This one-dimensional interpolation argument is also shown formally as part of Lemma 3.2 ahead. A
graphical depiction of the argument is provided in Figure 10.
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Proposition 2.1 is an example of what is described in this paper as partial identifi-

cation by extending subdistributions (PIES). A function F (·|xk) that satisfies (P1.2)–

(P1.5) is called a subdistribution because it satisfies all of the properties of a distribu-

tion function, except that its domain Uk(g) is a proper subset of R.7 The subdistribu-

tion extension lemma, discussed in Section 3.1, shows that for any subdistribution there

exists a proper distribution that extends it, in the sense that the two functions are equal

on the smaller domain of the subdistribution. Limiting attention to subdistributions

is useful for characterizing identified sets because, given a g ∈ G†, the observational

equivalence condition (OEQ) only restricts a proper conditional distribution function

at a finite number of points. As a result, the domain Uk(g) of the relevant subdistri-

bution F (·|xk) is finite, at least in models of discrete response. Proposition 2.1 shows

that if there exist subdistributions that satisfy (OEQ), then there also exist proper dis-

tributions that satisfy (OEQ) and, conversely, that if there exist proper distributions

that satisfy (OEQ), then their restrictions to smaller domains are subdistributions that

satisfy (OEQ). Hence, the existence of subdistributions satisfying (OEQ) is equiva-

lent to the existence of distributions satisfying (OEQ), which is in turn sufficient and

necessary for an admissible g to be in the identified set. This is why Proposition 2.1

provides a sharp characterization of the identified set G?.
The real power of PIES comes in the models discussed ahead, in which there are

more than one unobservable. The intuition of Proposition 2.1 carries over to these

models, but the result that any subdistribution can be extended to a proper distribution

is more subtle. Sklar (1959) established an analogous extension result for subcopulas

in the course of proving his celebrated eponymous theorem.8 His argument is based on

multilinear interpolation. Lemma 3.2 builds on Sklar’s result to provide a companion

extension result for subdistributions. This is discussed more fully in Section 3.1.

A crucial practical aspect of Proposition 2.1 is that the restrictions on the functions

F (·|xk) are linear for a fixed g. Hence, for a given g ∈ G†, Proposition 2.1 shows that

determining whether g is in the identified set is simply a matter of determining the ex-

istence of a solution to a system of linear equations. This is a relatively straightforward

computational problem. This linearity property of Proposition 2.1 will be shared by

all of the low-level characterizations discussed in this paper, and is the primary reason

that PIES is methodologically attractive.9

7This terminology is not fully standard but makes sense given the standard and closely related concept
of a subcopula. These definitions are discussed formally in Section 3.1 and Appendix A.

8Sklar’s result is reported in Appendix A.
9However, linearity is not the defining property of PIES, as shown in the general development in Section

3.2.
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Continuing with the analysis of the ordered discrete response model, note that up

to this point no assumptions have been placed on the set of admissible functions g ∈ G†

or the set of admissible conditional distribution functions F ∈ F†. As a consequence,

the identified set G? is completely uninformative. I show next that the characterization

in Proposition 2.1 can be modified to impose various additional identifying restrictions

on g and/or F , thereby leading to informative identified sets.

Restrictions on g are easy to impose by simply defining the admissible set G† to only

contain functions with those restrictions. For example, if J = 2 so that Y is a binary

outcome, then one might assume that G† = {g = (g0, g1, g2) : g0(x) = −∞, g2(x) =

+∞, g1(x) = β0 + β1x, some (β0, β1) ∈ R2} to impose a standard linear index form.

In this case, fixing a g ∈ G† would be equivalent to fixing a (β0, β1) ∈ R2. Imposing

restrictions on F requires more subtlety. By way of explanation, consider the following

proposition, which shows how independence, median independence, and conditional

symmetry conditions can be incorporated into the characterization of Proposition 2.1.

Proposition 2.2. Fix an admissible g ∈ G†.

1. Suppose that F† = F ind, where F ind is the set of all F ∈ F such that F (u|xk) =

F (u|xk′) for all k, k′ ∈ {1, . . . ,K} and all u ∈ R. For each k = 1, . . . ,K, let

Uk(g) be defined as

Uk(g) ≡ U(g) =

K⋃
k′=1

{gj(xk′) : j = 0, 1, . . . , J} ∪ {−∞,+∞}. (U1.I)

Then g ∈ G? if and only if for each k = 1, . . . ,K there exists a function F (·|xk)
with domain Uk(g) that satisfies (P1.1)–(P1.5), and if these functions can be taken

so that

F (u|xk) = F (u|xk′) for all k, k′ and u ∈ U(g). (P1.I)

2. Suppose that F† = Fmed, where Fmed is the set of all F ∈ F such that F (0|xk) = 1
2

for all k = 1, . . . ,K. For each k = 1, . . . ,K, let

Uk(g) ≡ {gj(xk) : j = 0, 1, . . . , J} ∪ {0} ∪ {−∞,+∞}. (U1.M)

Then g ∈ G? if and only if for each k = 1, . . . ,K there exists a function F (·|xk)
with domain Uk(g) that satisfies (P1.1)–(P1.5), and also satisfies

F (0|xk) =
1

2
for every k = 1, . . . ,K. (P1.M)
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3. Suppose that F† = F sym, where F sym is the set of all F ∈ F for which U |X = xk

would be distributed symmetrically around 0, i.e. those F such that F (u|xk) =

1− F (−u|xk) for all u ∈ R. For each k = 1, . . . ,K, let

Uk(g) ≡ {±gj(xk) : j = 0, 1, . . . , J} ∪ {0} ∪ {−∞,+∞}. (U1.S)

Then g ∈ G? if and only if for each k = 1, . . . ,K there exists a function F (·|xk)
with domain Uk(g) that satisfies (P1.1)–(P1.5), and also satisfies

F (u|xk) = 1− F (−u|xk) for every u ∈ Uk(g). (P1.S)

Proof of Proposition 2.2. Suppose that g ∈ G?. Then for the first, second and third

cases there exist, respectively, an F ∈ Fmed, an F ∈ F ind, and an F ∈ F sym for which

(OEQ) holds. In all of these cases, the result follows by taking F (u|xk) = F (u|xk) and

observing the definitions of Fmed, F ind or F sym.

Conversely, suppose that g ∈ G† and that the first set of conditions hold for some

functions F (·|xk) with domains U(g) as defined in (U1.I). Let F : U(g) → [0, 1] be

defined by F (u) = F (u|x) for any arbitrary x ∈ X . Then given (P1.2)–(P1.5), Lemma

3.2 shows that F can be extended to a proper distribution function F̃ : R→ [0, 1] such

that F̃ (u) = F (u) for all u ∈ U(g). Let F : R×X → [0, 1] be defined by F (u|xk) = F̃ (u)

for all k, so that F ∈ F ind. From (P1.I) it follows that F (u|xk) = F (u|x) = F (·|xk) for

all k. As a result of this and (P1.1), F also satisfies (OEQ) for each k. Hence g ∈ G?.
Suppose instead that g ∈ G† and that the second set of conditions hold for some

functions F (·|xk) with domains Uk(g) as defined as in (U1.M). The same extension

argument as in Proposition 2.1 shows that there exists an F ∈ F such that F (u|xk) =

F (u|xk) for all u ∈ Uk(g) and each k = 1, . . . ,K, so that F satisfies (OEQ). In addition,

since 0 ∈ Uk(g) and F satisfies (P1.M), F (0|xk) = F (0|xk) = 1
2 for each k = 1, . . . ,K,

so that F ∈ Fmed. Hence g ∈ G?.
The proof of necessity for the third set of conditions follows the same essential argu-

ment as the second set of conditions, but uses a more involved construction discussed

in Example 3.4 ahead. Q.E.D.

The first and second parts of Proposition 2.2 provide sharp characterizations of G?

under, respectively, the assumption that U is independent of X, and the assumption

that U has median 0, conditional on X. The third part strengthens the assumption of

the second part to also impose symmetry on the distribution of U , conditional on X.

Notice that in all three cases, the characterization of G? still amounts to determining

the existence of solutions to systems of linear equations, since each of (P1.I), (P1.M)
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and (P1.S) are linear in {F (u|xk) : u ∈ Uk(g), k = 1, . . . ,K}. It is straightforward

to combine the first and second assumptions so that U is not only independent of

X, but also has the median 0 location restriction. To do this, start with the first

statement of the proposition, but modify the definition of Uk(g) ≡ U(g) in (U1.I) so

that the set also includes 0, as in (U1.M), and then impose both (P1.I) and (P1.M).

An immediate modification of the proof shows that, for a fixed g ∈ G†, the existence

of F (·|xk) satisfying these constraints together with (P1.1)–(P1.5) both implies and is

implied by g ∈ G?. A similar argument could be used to combine the first and third

assumptions. The general model developed in Section 3.2 provides a formal framework

for combining assumptions in this way.

At this point it may be helpful to illustrate Propositions 2.1 and 2.2 through a

numerical illustration. Consider the binary response model

Y1 = 1[β0 + β1X1 + β2X2 < U1], (5)

with two included explanatory variables, X1 and X2. This model is a special case of

the ordered discrete response model with J = 2, y1 = 0, y2 = 1, and

G† = {g = (g0, g1, g2) : g0(x) = −∞, g2(x) = +∞,

g1(x) = β0 + β1x1 + β2x2, some (β0, β1, β2) ∈ R3}. (6)

The explanatory variable X1 is binary and generated as

X1 = 1[π0 + π2X2 + π3X3 < U2], (7)

where X3 is a third explanatory variable that is excluded from g. The data was gen-

erated with parameters values (β?0 , β
?
1 , β

?
2) = (.5,−.75, 1), (π?0, π

?
2, π

?
3) = (.3, 1, .2). The

distribution of X2 and X3 were taken to be independent with marginal distributions

uniform over one of the following supports

X2,K2=3 = {−1, 0, 1} X3,K3=3 = {−1, 0, 1}

X2,K2=5 =

{
−1,−1

2
, 0,

1

2
, 1

}
X3,K2=5 = {−2,−1, 0, 1, 2}

X2,K2=7 =

{
−1,−2

3
,−1

3
, 0,

1

3
,
2

3
, 1

}
(8)

where the integers K2 and K3 indicate the number of support points. The distribution

of (U1, U2) was taken to be bivariate normal independent of (X2, X3), with independent

components that each have mean 0 and variance 1.
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It is well-known that informative identification in binary response models is only

possible up to scale. In these simulations I imposed a scale normalization by assuming

that β2 = 1. Since this normalized value matches β?2 , the identified sets that will be

constructed can be interpreted as those for the levels of (β0, β1). For cases in which β?2

has a value different than 1, the constructed identified sets can be interpreted as those

for (β0/|β?2 |, β1/|β?2 |), i.e. they would be identified sets for (β0, β1) up to scale.10

The first row of Figure 1 displays the identified set for (β0, β1) under the assumption

that F† = Fmed, i.e. that the median of U1|X1, X2 is 0.11 If it were further assumed

that U1 is normally distributed and fully independent of (X1, X2), then these identified

sets would collapse to the point (β?0 , β
?
1) indicated on the plots by a hash mark, as in

the textbook probit model. The effect of symmetry and independence versus normality

can be seen in the third row of Figure 1 which displays the identified set for (β0, β1)

under the stronger restriction that F† = Fmed ∩ F ind ∩ F sym.

The assumption that F† = Fmed was also employed by Manski (1975, 1985, 1988) to

establish point identification in semiparametric binary response models without main-

taining a parametric distributional assumption on U1. However, Manski’s conditions

for point identification rely crucially on at least one component of (X1, X2) having a

continuous distribution. In general, point identification is not possible when (X1, X2)

are discretely distributed as in this simulation (Manski, 1988). The columns in the first

row of Figure 1 show that the size of the identified set decreases with the size of the

support of X2. This intuitive property can be seen from Proposition 2.2, which shows

that additional points of support add equations to a linear system, thereby imposing

more stringent restrictions for a given (β0, β1) pair to be in the identified set.

Proposition 2.2 provides a new way to compute the sharp identified set for β in

semiparametric binary response models, but not the first; Horowitz (2009, pp. 100-

108) suggested a computational approach and Komarova (2013) developed Horowitz’s

approach into a more analytic argument.12 However, as I show below, an extension of

Proposition 2.2 also provides a method for computing the identified set of causal pa-

rameters such as the average treatment effect under the maximum score assumptions.

No method for doing this has (to the best of my knowledge) been proposed before.

In addition, the PIES methodology can also be applied to models with two (or more)

equations. As demonstrated ahead, PIES can therefore be used to construct identi-

10These issues are exactly the same as in other parametric and semiparametric binary response models;
I am just restating them here for clarity.

11All simulations in this paper were written in AMPL (Fourer et al., 2002) and the linear programs were
solved with CPLEX (IBM, 2010).

12See also Blevins (2015) who considers set estimation in this framework.
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fied sets that exploit variation in instrumental variables, such as X3, with or without

maintaining the assumption that X1 is determined through the relationship given in

(7).

Each panel in Figure 1 was computed by searching across a grid of candidate β =

(β0, β1) pairs, determining the existence or nonexistence of a solution to the linear

systems posed in Proposition 2.2, and then correspondingly classifying β as either

inside or outside of the identified set. This is more computationally intensive than

necessary. In fact, if g and g′ induce the same orderings of the elements of Uk(g)

and Uk(g′) for every k, then both or neither of g and g′ are in G?. This reduces the

computational problem from one of searching over a grid to one of considering all

possible orderings, which in many cases will dramatically decrease the computational

intensity.13 The next proposition formalizes this argument.

Proposition 2.3. Fix any g, g′ ∈ G†. Maintain the assumptions of any part of Propo-

sition 2.2 and let Uk(g) and Uk(g′) be defined accordingly. Consider the mappings

ψk : Uk(g′)→ Uk(g) : ψk(u) ≡

gj(x) if u = g′j(x) for some j = 0, 1, . . . , J

u if otherwise and u ∈ Uk(g) ∩ Uk(g′).
(9)

Suppose that each ψk is well-defined through (9), and that each ψk is order-preserving,

in the sense that u′ ≤ u′′ for u′, u′′ ∈ Uk(g′) if and only if ψk(u
′) ≤ ψk(u

′′). Then

g ∈ G? if and only if g′ ∈ G?.

Proof of Proposition 2.3. Suppose that ψk as defined by (9) is well-defined and

order-preserving for each k, and that g ∈ G?. For concreteness, suppose that F = Fmed

as in the second part of Proposition 2.2 and that Uk(g) is defined as in (U1.M). Then

for each k there exists an F (·|xk) : Uk(g) → [0, 1] such that conditions (P1.1)–(P1.5)

and (P1.M) are satisfied. Define the functions F
′
(·|xk) : Uk(g′)→ [0, 1] by F

′
(u|xk) =

F (ψk(u)|xk). Notice that each F
′
(·|xk) is well-defined, since each ψk is well-defined

with codomain Uk(g). By the definition of ψk, each F
′
(·|xk) satisfies (P1.1)–(P1.4)

(with Uk(g) replaced by Uk(g′)) and (P1.M), since F (·|xk) satisfies these conditions.

Since each ψk is order-preserving, each F
′
(·|xk) also satisfies (P1.5) (again, with Uk(g)

replaced by Uk(g′)). Given these properties of each F
′
(·|xk), Proposition 2.2 implies

that g′ ∈ G?. The converse follows by exchanging the roles of g and g′. Q.E.D.

Consider the linear specification of G† in (6) with β2 normalized to 1. Under the

independence condition in the first part of Proposition 2.2, with Uk(g) specified as (4),

13This ordering property appears to be related to similar findings by Chesher (2010, 2013), Chiburis
(2010), and Chesher and Smolinski (2012).
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the mapping ψk is order-preserving if and only if g(x) = β0 + β1x1 + x2 and g′(x) =

β′0+β′1x1+x2 are such that β1 and β′1 have the same sign. If the median zero condition

in the second part of Proposition 2.2 is also imposed, so that 0 ∈ Uk(g)∩Uk(g′), then ψk

is order-preserving if and only if β1 and β′1 have the same sign and the set of supported

(x1, x2) for which β0+β1x1+x2 ≤ 0 are the same as those for which β′0+β′1x1+x2 ≤ 0.

In this example, independence by itself ensures identification of at most the sign of β1,

while some information on (β0, β1) can potentially be obtained with the additional

median 0 restriction.

The goal of many empirical studies in economics is to ascribe a causal interpretation

to the threshold-crossing model (2). In such analyses, the object of interest is not only g

but a causal parameter, such as an average treatment effect, that depends on both g and

F . For example, in the threshold-crossing model (2), a researcher may be interested in

the average structural function at xk. Suppose that Y is binary with all g ∈ G† having

g0(x) = −∞ and g2(x) = +∞. Then the average structural function at a fixed value

x? (not necessarily in the support of X) when the data is generated by (g, F ) is defined

as

ASF(g, F ) ≡ P[U > g1(x
?)] = 1−

K∑
k=1

F (g1(x
?)|xk) P[X = xk], (10)

see e.g. Blundell and Powell (2003). Let P? denote the identified set for the average

structural function at x?, i.e. the set of all p ∈ [0, 1] for which there exists a g ∈ G†

and an F ∈ F† that satisfy both (OEQ) and p = ASF(g, F ). The next proposition

shows how one can modify Propositions 2.2 and 2.3 to compute P? by solving linear

programs.

Proposition 2.4. Fix an admissible g ∈ G†. Suppose that F† is as in one of the parts

of Proposition 2.2. For each k = 1, . . . ,K, let Uk(g) be defined as in Proposition 2.2

according to the choice of F†, but also include the point g1(x
?) in each Uk(g). Define

p?(g) ≡ min
F (·|xk):Uk(g)→[0,1]

k=1,...,K

1−
K∑
k=1

F (g1(x
?)|xk) P[X = xk] (11)

subject to (P1.1)–(P1.5) and (P1.I), (P1.M), or (P1.S),

and define p?(g) to be the analogous maximum.14 Then P? ≡
⋃
g∈G? [p

?(g), p?(g)].

Moreover, [p?(g), p?(g)] = [p?(g′), p?(g′)] for any g, g′ ∈ G? for which the mappings

14If the constraint set is empty, then follow the standard convention of setting p?(g) = +∞, p?(g) = −∞
and [p?(g), p?(g)] = ∅.
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ψk in Proposition 2.3 are well-defined and order-preserving.

Proof of Proposition 2.4. The result follows trivially if G? is the empty set. So

assume that G? is not empty.

Suppose that p ∈ P?. By definition, there exists a g′ ∈ G? and an F ∈ F† that

satisfy (OEQ) and p = ASF(g′, F ). Taking F (u|xk) = F (u|xk) for each k and all

u ∈ Uk(g′) as in Propositions 2.1 and 2.2, shows that the constraint set in the program

defining p?(g′) and p?(g′) is non-empty. Hence, since p = 1−
∑K

k=1 F (g′1(x
?)|xk) P[X =

xk], it follows that p ∈ [p?(g′), p?(g′)], and hence that p ∈
⋃
g∈G? [p

?(g), p?(g)].

Conversely, suppose that there exists a g ∈ G? for which p ∈ [p?(g), p?(g)]. By

Proposition 2.2, there exist functions F (·|xk) : Uk(g)→ [0, 1] satisfying the constraints

in (11).15 As noted previously, these constraints are all linear in the values of F (·|xk),
so the set of all such {F (u|xk) : u ∈ Uk(g), k = 1, . . . ,K} is closed and convex. Since the

objective function in (11) is continuous (in fact, linear) in the values of F (u|xk), the im-

age of the objective function over the constraint set is the closed interval [p?(g), p?(g)].

Hence, since p ∈ [p?(g), p?(g)], there exists some choice {F (u|xk) : u ∈ Uk(g), k =

1, . . . ,K} in the constraint set for which p = 1 −
∑K

k=1 F (g1(x
?)|xk) P[X = xk]. The

result follows as in the previous two propositions by extending F to a proper conditional

distribution function F .

For the second statement, suppose that g, g′ ∈ G? and that p ∈ [p?(g), p?(g)].

Then there exist {F (u|xk) : u ∈ Uk(g), k = 1, . . . ,K} in the constraint set of (11)

for which p = 1 −
∑K

k=1 F (g1(x
?)|xk) P[X = xk]. Define F

′
(·|xk) : Uk(g′) → [0, 1]

by F
′
(u|xk) = F (ψk(u)|xk), as in the proof of Proposition 2.3. As shown in that

proof, each F
′
(·|xk) also satisfies the constraints of (11) (with Uk(g′) replacing Uk(g)).

Moreover, given the definition of ψk,

1−
K∑
k=1

F
′ (
g′1(x

?)|xk
)

P[X = xk] = 1−
K∑
k=1

F
(
ψk(g

′
1(x

?))|xk
)

P[X = xk]

= 1−
K∑
k=1

F (g1(x
?)|xk) P[X = xk] = p,

so that p ∈ [p?(g′), p?(g′)]. The opposite inclusion follows by exchanging the roles of g

and g′. Q.E.D.

Proposition 2.4 justifies the following computational procedure for determining

sharp identified sets for causal parameters like the average structural function. First,

fix a g ∈ G†. Next, attempt to solve the minimizing linear program in (11). There

15Note that adding the point g1(x?) to Uk(g) for each k does not affect this observation.
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exists a feasible solution to this program if and only if g ∈ G?. If in fact g ∈ G?,
then solve the maximizing program. The resulting interval [p?(g), p?(g)] represents the

values of the average structural function that are consistent with g ∈ G?. Repeat this

procedure over the entire space G† to determine G? and P? = ∪g∈G? [p?(g), p?(g)]. To

be more efficient computationally, one can partition G† into subsets such that every g

and g′ in a given subset induces a mapping ψk in Proposition 2.3 that is well-defined

and order-preserving. Then, the minimizing and maximizing linear programs need only

be solved once for a representative g from each subset. Chiburis (2010) used a similar

computational procedure; Proposition 2.4 provides a theoretical justification for this

procedure and, more importantly, suggests that it applies to a much more general class

of models than considered by Chiburis (2010). In Section 3, I develop this class of

models and also describe a wider choice of functions of (g, F ) to which a similar proce-

dure can be applied to determine the identified set. In particular, it is straightforward

to compute identified sets for an average treatment effect (the difference of two average

structural functions) by simply adjusting the objective function in (11).

Table 2 reports sharp identified sets for the average treatment effect of X1 on Y1 for

the data generating process defined by (5), (6), (7), and the surrounding discussion.

Specifically, the parameter of interest here is ATE ≡ ASF1 −ASF0, where

ASF0 ≡ P[U1 > β0 + β2X2] = 1−
K2∑
k=1

F (β0 + β2x2,k|x2,k) P[X2 = x2,k], and

ASF1 ≡ P[U1 > β0 + β1 + β2X2] = 1−
K2∑
k=1

F (β0 + β1 + β2x2,k|x2,k) P[X2 = x2,k].

The row corresponding to specification [1] reports the sharp identified set for the ATE

under the assumption that the conditional median of U1 is 0. There does not appear

to be any other method in the literature for obtaining sharp identified sets of this

quantity.16 Proposition 2.4 addresses the criticism of (e.g.) Angrist and Pischke (2009,

pg. 201) that the focus of binary response models should be average treatment effects

rather than index coefficients. The PIES method makes it possible to address identifi-

16It is important to reiterate here that the ATE involves counterfactual choice probabilities that have no
direct analog in the observed data. Khan (2013) proves that semiparametric binary response models with the
conditional median 0 assumption are observationally equivalent to parametric response models with latent
terms that have parametrically-specified unconditional distributions with multiplicative heteroskedasticity
of an unknown form. He uses this result to construct estimators of the factual choice probabilities (P[Y =
1|X = x]) for conditional median 0 binary response models without making parametric assumptions on
the distribution of the latent term. An implication of Khan’s (2013) result that is relevant for the current
discussion is that the counterfactual choice probabilities are not point identified under only a conditional
median 0 assumption.
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cation of both the index coefficients and average treatment effects, without resorting to

a parametric distributional assumption on the error term U1. The fact that the iden-

tified set is not a singleton represents the cost of being agnostic on the shape of the

distribution of U1. The assertion made by Wooldridge (2010, pg. 606) that “. . . we can

only learn about relative sizes of the coefficients using the semiparametric approach. . . ”

turns out to be overly pessimistic. Informative bounds on causal parameters can also

be obtained using the PIES methodology.

In specification [2], the conditional median 0 assumption is strengthened into full

symmetry around 0 of the conditional distribution of U1. Manski (1988) reasoned that

this has no effect on the identified set for the index coefficients, an assertion which is

supported by the first and second rows of Figure 1. However, comparing rows [1] and

[2] in Table 1 shows that the symmetry assumption does have an effect on the size of

the identified set for the ATE. Under the full independence condition in specification

[3], the identified set for the ATE collapses to a singleton, as expected. Nevertheless,

the index coefficients are still partially identified under full independence. A practical

consequence is that using a binary response model for extrapolation to covariate values

not observed in a given data set would still lead to partial identification, even under

the strong condition of full independence.17

The analysis thus far has been concerned with the single equation model given

by (2). The sharp characterizations of identified sets given in Propositions 2.2 and

2.4 utilized the intuitive result that a one-dimensional subdistribution function can be

extended to a proper one-dimensional distribution function with domain R. Similar

but less intuitive results also hold in higher dimensions. Some additional definitions

are needed for the general case. These are discussed in full detail in Section 3.1. For

now, I simply state and use the following result for two dimensions, which requires no

new definitions.18

Lemma 2.1. (Subdistribution extension in two dimensions) Suppose that U ⊆
R

2
can be written as U = U1×U2 where each of U1 and U2 is a closed subset of R that

contains {−∞,+∞}. Let F : U → [0, 1] be a function for which (i) F (u1, u2) = 0 if

either u1 or u2 is equal to −∞, (ii) F (+∞,+∞) = 1, and (iii)

F (u′1, u
′
2)− F (u′′1, u

′
2)− F (u′1, u

′′
2) + F (u′′1, u

′′
2) ≥ 0 (12)

17Such an extrapolation exercise would correspond to setting x? to a point not in X in Proposition 2.4.
Extrapolation like this is often of interest in discrete choice analysis, for example in forecasting demand for
a new or hypothetical product on which no data is observed.

18The proof of Lemma 2.1 is a special case of Lemma 3.2 and Corollary 3.1 below.
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for any u′, u′′ ∈ U such that u′′ ≤ u′ component-wise. Then there exists a proper 2-

dimensional joint distribution function F with domain R
2

such that F (u) = F (u) for

all u ∈ U .19

Suppose additionally that the margins of F , i.e.

F 1 : U1 → [0, 1] : F 1(u1) = F (u1,+∞)

and F 2 : U2 → [0, 1] : F 2(u2) = F (+∞, u2),

are such that for each j = 1, 2 there exists an Fj in some class of proper one-dimensional

distribution functions Fj such that Fj(uj) = F j(uj) for all uj ∈ Uj. Then there ex-

ists a proper, 2-dimensional joint distribution function F with domain R
2

such that

F (u) = F (u) for all u ∈ U , and such that Fj ∈ Fj for j = 1, 2, where

F1 : U1 → [0, 1] : F1(u1) = F (u1,+∞)

and F2 : U2 → [0, 1] : F2(u2) = F (+∞, u2)

are the margins of F .

To see how Lemma 2.1 can be used to characterize identified sets for models with

multiple unobservable variables, consider adding a first stage equation to (2), i.e. as-

sume that

Y1 =
J∑
j=1

y1j1[g1(j−1)(Y2, X) < U1 ≤ g1j(Y2, X)] (13)

and Y2 =
K∑
k=1

y2k1[g2(k−1)(X) < U2 ≤ g2k(X)], (14)

where Y1 and Y2 are observed variables with supports Y1 ≡ {y11, . . . , y1J} and Y2 ≡
{y21, . . . , y2K} ordered to be increasing,

g ≡ (g1, g2) ≡ (g10, g11, . . . , g1J , g20, g21, . . . , g2K)

is an unknown vector of functions, X is an observed variable with finite support X ,

and U ≡ (U1, U2) is a bivariate latent random variable. Relative to the single equation

model, X has been replaced notationally by Y2, an equation (14) for Y2 has been

added to (13), and a new variable X—the determination of which is not modeled—

has been introduced. This change in notation is made in order to be consistent with

19The technical qualifier that F is non-defective can also be added; this is addressed in the formal
discussion in Section 3.1.
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the general formulation in Section 3, where a distinction is made between internal

(modeled) variables Y and external (unmodeled) variables X.

Let F denote the set of all proper bivariate conditional distribution functions F :

R
2×X → [0, 1], and let F† denote the subset of F deemed admissible by the researcher.

In this two-equation model, g ∈ G? if and only if g ∈ G† and there exists an F ∈ F†

such that when U |X = x is distributed like F (·|x),

P[Y1 ≤ y1j , Y2 ≤ y2k|X = x]

=

k∑
k′=1

P [U1 ≤ g1j(y2k′ , x), Y2 = y2k′ |X = x]

=
k∑

k′=1

P
[
U1 ≤ g1j(y2k′ , x), U2 ∈ (g2(k′−1)(x), g2k′(x)]|X = x

]
=

k∑
k′=1

F (g1j(y2k′ , x), g2k′(x)|x)− F
(
g1j(y2k′ , x), g2(k′−1)(x)|x

)
(OEQ2)

for all j = 1, . . . , J , k = 1, . . . ,K and x ∈ X .

The following proposition shows how to apply Lemma 2.1 to characterize G? under

the assumption that X is an exogenous instrument in the sense that (U1, U2)⊥⊥X. It

also provides a characterization of G? under the weaker exogeneity assumption that

U1⊥⊥X, in which case (14) is without loss of generality.20 The difference between the

identified sets in the two cases reflects the identifying content of the first stage equation

(14) under the joint independence assumption (U1, U2)⊥⊥X.21

Proposition 2.5. Fix an admissible g ∈ G†.

1. Suppose that F ∈ Fmarg, where Fmarg is the set of all F ∈ F such that F (u1,+∞|x)

= F (u1,+∞|x′) for all x, x′ ∈ X and all u1 ∈ R. For each x ∈ X , let

U1,x(g) = U1(g) ≡ {g1j(y2k, x) : j = 0, 1, . . . , J, k = 1, . . . ,K, x ∈ X} ∪ {−∞,+∞},

and U2,x(g) ≡ {g2k(x) : k = 0, 1, . . . ,K} ∪ {−∞,+∞},

and let Ux(g) ≡ U1(g)× U2,x(g). Then g ∈ G? if and only if for each x ∈ X there

20To see this, note that if U2 is uniformly distributed on [0, 1] and g is taken so that g2,0(x) = 0, g2,K(x) = 1
and g2,k(x) = P[Y2 ≤ y2,k|X = x], then (14) always generates the distribution of Y2|X. In fact, (14) is still
without loss of generality if both U1⊥⊥X and U2⊥⊥X. The content of (14) comes from the assumption that
(U1, U2) are jointly independent of X, which is not implied by marginal independence between X and each
of U1 and U2.

21In both cases, it is common to also impose the exclusion restriction that g1 not depend directly on X.
This can be incorporated by appropriately defining G†, as illustrated in the simulations below. Proposition
2.5 is valid whether or not one imposes this type of exclusion restriction.
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exists a function F (·|x) with domain Ux(g) such that

k∑
k′=1

F (g1j(y2k′ , x), g2k′(x)|x)− F (g1j(y2k′ , x), g2(k′−1)(x)|x) (P2.1)

= P[Y1 ≤ y1j , Y2 ≤ y2k|X = x] for all j = 1, . . . , J and k = 1, . . . ,K,

1 ≥ F (u|x) ≥ 0 for all u ∈ Ux(g), (P2.2)

F (u1,−∞|x) = 0 and F (−∞, u2|x) = 0 for all u1 ∈ U1(g), u2 ∈ U2,x(g), (P2.3)

F (+∞,+∞|x) = 1, (P2.4)

F (u′1, u
′
2|x)− F (u′1, u

′′
2|x)− F (u′′1, u

′
2|x) + F (u′′1, u

′′
2|x) ≥ 0

for all u′, u′′ ∈ Ux(g) such that u′′ ≤ u′ component-wise, (P2.5)

together with

F (u1,+∞|x) = F (u1,+∞|x′) for all x, x′ ∈ X and u1 ∈ U1(g). (P2.MI)

2. Suppose that F ∈ F joint, where F joint is the set of all F ∈ F such that F (u|x) =

F (u|x′) for all x, x′ ∈ X and all u ∈ R
2
. Let

U1(g) ≡ {g1j(y2k, x) : j = 0, 1, . . . , J, k = 1, . . . ,K, x ∈ X} ∪ {−∞,+∞},

and U2(g) ≡ {g2k(x) : k = 0, 1, . . . ,K, x ∈ X} ∪ {−∞,+∞},

and for each x ∈ X let Ux(g) ≡ U(g) ≡ U1(g) × U2(g). Then g ∈ G? if and only

if for each x ∈ X there exists a function F (·|x) with domain Ux(g) ≡ U(g) that

satisfies (P2.1)–(P2.5), together with

F (u|x) = F (u|x′) for all x, x′ ∈ X and u ∈ U(g). (P2.JI)

Proof of Proposition 2.5. The necessity statement follows from analogous argu-

ments to those in Propositions 2.1 and 2.2.

The sufficiency statement is more straightforward to prove in the second case, so

suppose first that g ∈ G† and that there exist functions F (·|x) with domains Ux(g) ≡
U(g) that satisfy (P2.1)–(P2.5), and (P2.JI). Given (P2.2)–(P2.5), Lemma 2.1 shows

that for any arbitrary x ∈ X , F (·|x) can be extended to a proper bivariate distribution

function F̃ : R
2 → [0, 1] for which F̃ (u) = F (u|x) for all u ∈ U(g). Given (P2.1) and

(P2.JI), letting F ∈ F joint be defined by F (u|x) = F̃ (u) = F (u|x) shows that there

exists an F ∈ F joint satisfying (OEQ2), and hence that g ∈ G?.
Now suppose that the functions F (·|x) satisfy the conditions in the first case. Define
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F 1 : U1(g)→ [0, 1] by F 1(u1) = F (u1,+∞|x) for any arbitrary x ∈ X . Then (P2.3) and

(P2.5) imply that F 1 is weakly increasing,22 so there exists a proper one-dimensional

distribution function F̃1 that extends F 1. Letting F1 : R × X → [0, 1] be defined

as F1(u1|x) = F̃1(u1) for all x ∈ X , it follows that F1(u1|x) = F̃1(u1) = F 1(u1) ≡
F (u1,+∞|x) for all x ∈ X , so that F1(·|x) is an extension of F (·,+∞|x) that also does

not vary with x. Hence, (P2.1)–(P2.5) with the second part of Lemma 2.1 implies that

there exists an F ∈ Fmarg satisfying (OEQ2), so that g ∈ G?. Q.E.D.

The primary change in Proposition 2.5 from the one-dimensional cases is repre-

sented by (P2.5). This condition says that F (·|x) is 2-increasing.23 An additional

difference evident in the first part of Proposition 2.5 is that, when dealing with sub-

distribution functions of higher dimensions, it is possible to impose conditions on the

margins separately. Aside from these details, however, the central idea of the PIES

argument is the same, in that it shows that the existence of a properly constrained

subdistribution is both sufficient and necessary for an admissible g ∈ G† to be in the

identified set G?. Notice in particular that (P2.1)–(P2.5), (P2.MI) and (P2.JI) are

all still linear in {F (u|x) : u ∈ U(g), x ∈ X}, so that the practical determination of

whether g ∈ G? remains a straightforward computational problem. The adaptation of

Propositions 2.3 and 2.4 to the triangular model is immediate. It is also immediate

to combine the instrumental variable restrictions in Proposition 2.5 with the location

and symmetry restrictions in Proposition 2.2 by simply adding those constraints to the

linear system. A unified discussion of this type of general framework is contained in

Section 3.2.

The simulated data generating process used above to illustrate the single equation

case can also be used to illustrate the triangular case. To stay consistent with notation,

I relabel X1 as Y2 so that equations (5) and (7) become

Y1 = 1[β0 + β1Y2 + β2X2 < U1] (15)

and Y2 = 1[π0 + π2X2 + π3X3 < U2]. (16)

Aside from this change in notation, the data generating process remains the same

as before. This model is essentially the bivariate probit model considered originally

by Heckman (1978), and more recently by Han and Vytlacil (2015), but the PIES

methodology does not require the researcher to maintain a parametric assumption on

the distribution of (U1, U2). With access to X3, the researcher can entertain instrumen-

tal variables type assumptions that impose various forms of independence between X3

22See Lemma 3.1 in Appendix A.
23See Section 3.1 for the general definition of an L-increasing function.
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and U1 and/or U2. As shown in Proposition 2.5, these assumptions can either be ag-

nostic about the determination of Y2, or can explicitly impose the triangular first stage

equation (16). This first stage equation can either be parametrically or nonparamet-

rically specified. The simulation results discussed ahead shed light on the identifying

content of such assumptions.

Specification [4] listed in Table 1 imposes only the assumption that the median of

U1|X2, X3 is equal to 0, which is like an instrumental variables version of Manski’s

(1988) semiparametric binary response model.24 Hong and Tamer (2003) establish

point identification of this model under a support condition on (X2, X3) that is similar

to the one required in the exogenous regressor case, and in particular does not hold

when all components of the instruments are discrete, as in this simulation. The sharp

identified set for (β0, β1) is displayed in the top row of Figure 2. It is unbounded

and much larger than the corresponding set for [1] in Figure 1, which reflects the

identifying content of assuming exogeneity of the regressor of interest rather than an

instrument. As seen by comparing the columns of the first row of Figure 2, the size of

the identified set shrinks with the number of support points of the exogenous variables

(X2, X3) for the same reason as in the exogenous regressor case. This property persists

throughout all of the simulations discussed ahead. Row [4] of Table 2 reports the

sharp identified set for the average treatment effect of Y2 on Y1 under this median

independence instrumental variables assumption using an appropriate modification of

Proposition 2.4.

Specification [5] strengthens the median independence condition in [4] to full inde-

pendence, i.e. U1⊥⊥(X2, X3). This model is similar to that studied by Chesher (2010,

2013) and Chesher and Smolinski (2012), although the results of those authors only

cover the case in which U1⊥⊥X3, i.e. they do not show how to exploit exogeneity

assumptions for included explanatory variables. It is straightforward to treat both

cases using the PIES methodology. Those authors also considered a fully nonpara-

metric specification, under which some functional normalization is needed to achieve

non-trivial identified sets. A common choice, maintained by those authors, is that U1

is uniformly distributed on [0, 1] (Matzkin, 1994, 2003, 2007). Such a restriction is

not a normalization if g is parametrically specified, as it is here. On the other hand,

Chesher (2010, 2013) and Chesher and Smolinski (2012) established analytic expres-

24While this case is not covered explicitly under Proposition 2.5, it should be clear how the argument
of the first part of Proposition 2.2 can be combined with Lemma 2.1 to provide the appropriate result. In
particular, 0 should be included in Ux(g) for all x, and F should be constrained so that F (0|x2, x3) = 0 for
all (x2, x3). The repetition of enumerating all of these particular cases motivates the general formulation
discussed in Section 3.
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sions for the sharp identified set of g, whereas the PIES approach is computational.

While analytic expressions are helpful for understanding the structure of the identified

set, the sharp constructions used in these papers are subtle to derive and difficult to

modify for different choices of assumptions.

Sharp identified sets for (β0, β1) under [5] are displayed in the second row of Figure

2. Like Chesher (2010, 2013), Chiburis (2010), and Chesher and Smolinski (2012), I

find that the sharp identified set for the structural function (here parameterized by

(β0, β1) is not only non-convex, but disconnected. As a result, the sharp identified set

for the ATE is also disconnected, see Table 2. Specification [6] adds to [5] the condition

that U1|X2, X3 is symmetrically distributed around 0. This has a small effect on the

identified set for the ATE, but, unlike in the exogenous Y2 case, also greatly reduces

the size of the identified set of (β0, β1).

Some insight into why symmetry has a much larger effect on the identified sets for

(β0, β1) than it does on the ATE can be seen in the heat maps plotted in Figures 4–9.

These graphs show the sharp bounds on the ATE for fixed values of (β0, β1). Darker

colors indicate better bounds. Comparing the second and third rows of Figure 6, one

can see that even though the sharp identified set for (β0, β1) is much smaller in [6] than

in [5], points in the small disconnected region, which are the ones that achieve the worst

fixed-(β0, β1) lower bounds, remain in the sharp identified set in both specifications.

This explains why the lower bound does not change between [5] and [6]. On the other

hand, Figure 7 shows that the upper bound improves somewhat from [5] to [6] because

the additional assumptions reduce the size of the larger disconnected region, which

contains the (β0, β1) points associated with the poorest upper bounds.

Specifications [7], [8], and [9] impose the full triangular model structure. In [7],

it is only assumed that there exists some first stage equation with an unobservable

term U2 that is independent of (X2, X3) jointly with U1. Chesher (2005), Shaikh and

Vytlacil (2011), Jun et al. (2011, 2012), and Mourifié (2015) derived analytic expres-

sions for completely nonparametric binary response models with first stage equations.25

As in the single equation literature, the nonparametric outcome equation allows the

distribution of U1 to be normalized, which greatly reduces the difficulty of finding

sharp characterizations of identified sets.26 In contrast, when g is assumed to satisfy

a parametric index structure, such a normalization is no longer without loss of gen-

erality and a more flexible approach, such as PIES, is required. This has important

25See also Vytlacil and Yıldız (2007) and Yıldız (2013), who established point identification by using
exogenous variation in the outcome equation under some additional support conditions.

26Even in this nonparametric case, deriving the sharp identified set under limited support restrictions
requires a subtle construction; see for example the argument in Mourifié (2015).
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implications for empirical work, because the curse of dimensionality often renders a

fully nonparametric analysis too imprecise to be useful. The analysis of this section

shows how one can characterize the empirical content of discrete response—and other

nonlinear models—that maintain the linear-in-parameters index, but relax the more

objectionable parametric distributional assumptions.

Comparing the results for specifications [5] and [7] in Figures 2 and 3 shows that

the assumption that (X2, X3) are exogenous with respect to both the first stage and

outcome equations does have an impact on the identified set for both the index co-

efficients and the ATE. Interestingly, imposing a linear index structure on the first

stage, as in [8], has no additional impact on the identified sets for either the index

coefficients or the ATE. Specification [9] also requires both U1 and U2 to be symmetri-

cally distributed around 0, which substantially tightens the identified sets of the index

coefficients relative to both [8] and [6], but has only a modest effect on the identified

set of the ATE.

3 The General Theory of PIES

3.1 The Subdistribution Extension Lemma

This section develops a formal statement of the subdistribution extension lemma al-

luded to in the previous section. This requires some definitions and intermediate re-

sults.27 The first key concept is that of an L-increasing function.

Definition 3.1. Let U be a subset of R
L

such that U = U1 × · · · × UL for subsets Ul
of R. A function F with domain U is called L-increasing if for any u′, u′′ ∈ U with

u′ ≤ u′′ component-wise,

VolF (u′, u′′) ≡
∑

u∈Vrt(u′,u′′)

sgn(u′,u′′)(u)F (u) ≥ 0, (17)

where Vrt(u′, u′′) is the set of u ∈ U such that ul ∈ {u′l, u′′l } for each l, and

sgn(u′,u′′)(u) ≡

1, if ul = u′l for an even number of l ∈ {1, . . . , L}

−1, if ul = u′l for an odd number of l ∈ {1, . . . , L}.

The quantity VolF (u′, u′′) is the F -volume of the L-box [u′1, u
′′
1]× · · · × [u′L, u

′′
L] and the

elements of the set Vrt(u′, u′′) are the vertices of the box.

27This discussion follows treatments by Schweizer and Sklar (1983) and Nelsen (2006).
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L-increasingness reduces to the standard definition of weakly increasing for L = 1.28

For L = 2, it is condition (12) given in Lemma 2.1. Intuitively, the property of L-

increasingness requires a function F to assign a non-negative volume to every L-box

with vertices in U . This is a key property of distribution functions, for which volumes

become interpretable as probabilities of events.

The following definition of a distribution function is standard.29 The concept of

a subdistribution—which, to the best of my knowledge, is novel to this paper—is a

natural counterpart to the concept of a subcopula, which is discussed in Appendix A

and used in the proofs in Appendix B.30

Definition D. Let U be a subset of R
L

such that U = U1 × · · · × UL where Ul ⊆ R is

such that {−∞,+∞} ∈ Ul for each l. An L-dimensional subdistribution function is a

function F with domain U such that

D1. F is L-increasing.

D2. F (u) = 0 for any u ∈ U that has at least one component equal to −∞.

D3. F (+∞, . . . ,+∞) = 1.

An L-dimensional distribution function (or, for emphasis, a proper L-dimensional

distribution function) is an L-dimensional subdistribution function for which U = R
L

.

A proper L-dimensional distribution function is non-defective if F (un) → 1 for any

sequence {un}∞n=1 ⊂ R
L

with all components diverging to +∞ and F (un)→ 0 for any

sequence {un}∞n=1 ⊂ R
L

with at least one component diverging to −∞.

Corresponding to every L-dimensional subdistribution function is a collection of L

margins.

Definition 3.2. Let F be an L-dimensional subdistribution function with domain U =

U1 × · · · × UL. The lth margin of F is defined for each l = 1, . . . , L as

Fl : Ul → [0, 1] : Fl(ul) = F (+∞, . . . , ul, . . . ,+∞). (18)

The next lemma records the fact that each margin is itself a one-dimensional sub-

distribution function.

28Note that the definition of sgn(u′,u′′) uses the fact that 0 is an even integer.
29Although, note that the normalization of left- or right-continuity for each margin (see below) is left

unspecified here, in contrast to many treatments that define distribution functions as objects derived from
random variables. This is innocuous, since the left- and right- continuous versions of a monotone real-valued
function determine each other, see e.g. Section 2.2 of Schweizer and Sklar (1983).

30One occasionally encounters the phrase subdistribution as referring to a distribution-like function with
largest value strictly smaller than 1. This is a distinct concept from the one introduced here, and no confusion
between the two concepts will arise in this paper.
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Lemma 3.1. Let F be an L-dimensional subdistribution function with domain U =

U1 × · · · × UL. Then the lth margin of F is a one-dimensional subdistribution function

with domain Ul.

Proof of Lemma 3.1. Conditions D2 and D3 follow immediately from the fact that

F is an L-dimensional subdistribution. Condition D1, which in the one-dimensional

case reduces to the usual notion of weakly increasing, is implied by Lemma 6.1.5 of

Schweizer and Sklar (1983). Q.E.D.

With these definitions, the general subdistribution extension lemma can be stated

as follows.

Lemma 3.2. (Subdistribution extension) Suppose that U ⊆ R
L

can be written as

U = U1 × · · · × UL where each Ul is a closed subset of R that contains {−∞,+∞}.
Let F : U → [0, 1] be an L-dimensional subdistribution. Then there exists a proper,

non-defective, L-dimensional joint distribution function F defined on R
L

such that

F (u) = F (u) for all u ∈ U . Furthermore, if F is continuous on U , then there exists

such an F that is continuous on R
L

.31

A proof of Lemma 3.2 is provided in Appendix B. The proof makes use of some

fundamental results in copula theory, in particular, Sklar’s Theorem and a key inter-

mediate result (referred to here as Sklar’s Lemma) used in the classical proof of Sklar’s

Theorem.32 Sklar’s Lemma establishes a result analogous to Lemma 3.2 for copulas

and subcopulas, namely that every subcopula can be extended to a copula. Since copu-

las and subcopulas are like distributions and subdistributions, but with fixed margins,

Lemma 3.2 can be viewed as an extension of Sklar’s Lemma. The main contribution of

this paper is to show how Lemma 3.2 (and its corollary below) can be applied to pro-

vide tractable, sharp characterizations of identified sets in a wide variety of econometric

models.33

The following corollary to Lemma 3.2 provides some additional flexibility in choos-

ing the extension F for a given subdistribution F for situations in which it is known

31Note that if u is an isolated point of U then F is regarded as being trivially continuous at u.
32Appendix A provides a brief review of the relevant concepts and results in copula theory.
33Chiburis (2010, pg. 271) also noted briefly that Sklar’s Lemma could be used to simplify characteri-

zations of identified sets in a specific type of nonparametric binary response model with two unobservable
terms that have marginal distributions normalized to be uniform over [0, 1]. However, Chiburis (2010) did
not develop this insight formally, and did not appear to realize that the argument could be generalized to
apply to the much broader class of models discussed in this paper. See also Mourifié (2015), who utilized
Chiburis’s (2010) insight to develop an analytic characterization of the sharp identified set for the same
nonparametric binary response model.
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that the margins of F satisfy certain properties. This is useful in the partial identifi-

cation analysis because it allows a researcher to maintain assumptions directly on the

margins of admissible F . To state the corollary, I employ the following definition.

Definition 3.3. Suppose that F is a collection of proper one-dimensional distribution

functions and F is a collection of one-dimensional subdistribution functions with com-

mon domain U . Then F is extendible to F if for every F ∈ F there exists an F ∈ F
such that F |U = F .34

The corollary can now be stated as follows.

Corollary 3.1. Suppose that U and F are as in Lemma 3.2 and that for each l =

1, . . . , L, F l ∈ F l, where F l is a set of one-dimensional subdistribution functions

with common domain Ul that is extendible to a collection Fl of proper, non-defective,

one-dimensional distribution functions. Then there exists a proper, non-defective, L-

dimensional distribution function F defined on R
L

such that F (u) = F (u) for all u ∈ U
and such that Fl ∈ Fl for each l = 1, . . . , L.

Before providing some concrete examples of extendibility, consider also the following

companion definition of reducibility, which is in some sense the inverse of extendibility.

This definition is also useful for the partial identification analysis in the next section

but, as the examples below show, it is typically easier to establish than extendibility.

Definition 3.4. Suppose that F is a collection of proper one-dimensional distribu-

tion functions and F is a collection of one-dimensional subdistribution functions with

common domain U . Then F is reducible to F if F ∈ F implies that F |U ∈ F .

The following are some concrete examples of extendibility and reducibility that will

be useful for the partial identification analysis of the next section. The first example is

trivial, but useful in contexts where a researcher wishes to maintain a known marginal

distribution for an unobservable. This is frequently done for identification in classical

applications of nonlinear parametric econometric models, and is also often imposed

as a normalization in nonparametric models (e.g. Matzkin (2003), Chernozhukov and

Hansen (2005) and Chesher (2010)).

Example 3.1. Suppose that F = {δ} is the set consisting of a single proper, one-

dimensional distribution function δ and suppose that F = {δ|U} for any U ⊆ R. Then

F is extendible to F and F is reducible to F .

34For any function f with domain A and B ⊆ A, the notation f |B denotes the restriction of f to B.
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The next example observes that subdistributions with compact domains (leaving

aside {−∞,+∞}) are extendible to the set of distributions with mean 0, and that the

converse reducibility property also holds.

Example 3.2. Suppose that F is the set of all proper one-dimensional distribution

functions such that
∫
u dF (u) = 0. Suppose that U ⊆ R is compact and that F

is any collection of subdistributions F with domains U ≡ U ∪ {−∞,+∞} for which

F (u) ∈ (0, 1) for every u ∈ U . Then F is extendible to F and F is reducible to F .

To see this, observe that if F ∈ F then regardless of whether F has mean zero or

not, its restriction to U is still a subdistribution. Conversely, if F ∈ F then because U
is compact and 1 > F (u) > 0 for every u ∈ U , one can select an F that agrees with

F on U and places sufficient mass sufficiently far out in either its left or right tail to

ensure that
∫
u dF (u) = 0.

Manski (1988) observed that the type of conditional mean zero conditions used in

linear models have no identifying content for the index coefficients of a single equation

semiparametric binary response model, such as the one considered in the simulations

in Section 2. Manski’s intuition is essentially what is contained in Example 3.2. In

the next section it will become clear that, because of the extendible/reducible prop-

erty of mean 0 distribution functions, conditional mean zero assumptions do not, by

themselves, have identifying content for standard parameters of interest in any ordered

discrete response model.35 This is because, in the absence of any additional identifying

assumptions, the subdistribution of interest for these models always has a bounded

domain (leaving aside {−∞,+∞}). As a result, restricting the admissible set of dis-

tributions for the unobservables to have mean 0 will not place any restrictions on the

set of underlying subdistributions that determines the identified set. On the other

hand, if F satisfies a median (or other quantile) restriction, then it is only reducible to

subdistribution classes that satisfy a similar condition.

Example 3.3. Suppose that F is the set of all proper one-dimensional distribution

functions F such that F (0) = 1/2. Suppose that F is a collection of subdistributions

F with domain U such that 0 ∈ U and such that F (0) = 1/2. Then F is extendible to

F and F is reducible to F .

Notice in particular that the restriction that 0 ∈ U and F (0) = 1/2 for all F ∈ F
is required for extendibility. For clearly, if F (0) 6= 1/2 then any proper conditional

distribution function F that extends F does not satisfy F (0) = 1/2, and so is not an

element of F .

35However, these types of moment conditions can have content when combined with additional indepen-
dence and support assumptions, see e.g. Lewbel (2000) or Magnac and Maurin (2007).
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The next example considers symmetry restrictions of the sort imposed in the third

part of Proposition 2.2. The proof of the third part of that proposition was delayed

with the claim that it depended on a more involved construction. That construction

is presented in this example. It shows how more complicated shape restrictions, such

as symmetry, can be embedded in the concepts of reducibility and extendibility. As

the general analysis in the next section will make clear, these concepts and Corollary

3.1 will allow a researcher to characterize sharp identified sets for models with multiple

unobservables and shape restrictions on the marginal distribution of each of these

unobservables.

Example 3.4. Suppose that F is the set of all proper one-dimensional distribution

functions that are symmetric around 0, i.e. such that F (u) = 1−F (−u) for all u ∈ R.

Suppose that F is a collection of subdistributions with domain U such that 0 ∈ U , u ∈ U
if and only if −u ∈ U , and such that F (u) = 1 − F (−u) for all F ∈ F and u ∈ U .

Then F is extendible to F and F is reducible to F .

Reducibility follows immediately by the properties of F , F and U . To see that F is

extendible to F , let F be an arbitrary element of F and define a function F
−

on U by

F
−

: U → [0, 1] : F
−

(u) =

2F (u) if u ≤ 0

1 if u > 0.

Observe that F
−

is also a one-dimensional subdistribution, and let F− : R → [0, 1] be

an extension of F
−

, which exists by Lemma 3.2. Then define F : R→ [0, 1] by

F (u) =

1
2F
−(u) if u ≤ 0

1− 1
2F
−(−u) if u > 0,

so that F (u) = 1−F (−u) for all u by construction, i.e. F ∈ F . In addition, F extends

F because if u ∈ U and u ≤ 0 then

F (u) =
1

2
F−(u) =

1

2
F
−

(u) = F (u),

while if u ∈ U and u ≥ 0 then

F (u) = 1− 1

2
F−(−u) = 1− 1

2
F
−

(−u) = 1− F (−u) = F (u).

Hence F is extendible to F .
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3.2 PIES for a General Econometric Model

In this section, I use the subdistribution extension lemma and its corollary to develop

a sharp characterization of identified sets in a general model of the distribution of an

internal random vector Y with support Y ⊆ RdY , conditional on an external random

vector X with support X ⊆ RdX . The model is assumed to be describable by a

structure S = (h, F ), where F : R
L × X → [0, 1] is the conditional-on-X distribution

function for a latent vector U ∈ RL with known dimension L, and h is a vector-valued

function mapping X and U into Y , i.e. Y = h(X,U). This model is quite general, but

does not allow for models that are incomplete, i.e. models for which some values of

(x, u) lead to more than one value of Y . The distinction between Y and X is that the

determination of Y is modeled, while the determination of X is not.36

A structure S = (h, F ) generates a conditional distribution of Y through the rela-

tionship

PS [Y ≤ y|X = x] = PS [h(x, U) ≤ y|X = x], (19)

where PS denotes the probability measure induced by the assumption that Y = h(X,U)

with U |X = x having conditional distribution following F (·|x) for each x ∈ X . For

characterizing the identified set, it will be convenient to represent the right-hand side

of (19) notationally as

PS [h(x, U) ≤ y|X = x] ≡ ωy|x(h, F ), (20)

for some function ωy|x of h and F .

Remark 3.1. Consider the single equation model in Section 2. In that model, h is

given by (2), i.e.

h(X,U) =

J∑
j=1

yj1[gj−1(X) < U ≤ gj(X)], (2)

so that h is fully determined by the vector-valued function g. The mapping ωy|x is

given by the right-hand side of (OEQ). Observe that ωy|x does not depend on the

entirety of F and h, but only on the values of F (u|xk) at u ∈ {gj(xk) : j = 0, 1, . . . , J}.
Similarly, for the triangular model in Section 2, h is defined through (13)–(14), with

36The purpose of using the terminology “internal” and “external” is to reserve the phrases “endogenous”
and “exogenous” for describing the relationship between observed and unobserved variables. The latter
usage of these terms seems more common in the recent literature.
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g ≡ (g1, g2) fully determining h, and ωy|x is given by the right-hand side of (OEQ2).

In this model too, ωy|x only depends on F and h through the values of F (u1, u2|x) with

u1 ∈ {g1j(y2k, x) : j = 0, 1, . . . , J, k = 1, . . . ,K} and u2 ∈ {g2k(x) : k = 0, 1, . . . ,K}.
The limited dependence of ωy|x on (h, F ) played an important role in the results of

Section 2 and will be captured in the general Theorem 1 below.

The notational distinction between Y and X for the ordered discrete response models

analyzed in Section 2 is consistent with that developed here. Notice, however, that there

is often some flexibility with whether one classifies a variable as internal or external.

For example, under the assumptions imposed in the second part of Proposition 2.2,

(14) was without loss of generality, so Y2 could have alternatively been classified as an

external variable without affecting the model.

The F component of the structure S = (h, F ) is a proper conditional joint distri-

bution function F : R
L × X → [0, 1] for the latent variables U ∈ RL, conditional on

the external variables X. The dimension of the latent variables, L, is assumed to be

known by the researcher, but is otherwise unrestricted in relationship to the dimension

of the observed variables. The space of all such proper conditional L-dimensional dis-

tribution functions is denoted by F . The researcher only considers structures with F

components lying in some admissible set F† ⊆ F , which is typically a proper subset of

F . The admissible set contains only those distributions which satisfy the a priori (or

“identifying”) assumptions maintained by the researcher. The next assumption places

abstract restrictions on the types of identifying assumptions that can be maintained.

Assumption A. The admissible set F† is the set of all F ∈ F that satisfy the following

properties. In the following, for any F ∈ F , the function Fl(·|x) denotes the lth margin

of F (·|x).

A1. ρ(h, F ) ≥ ~0 for some known function ρ, where ~0 is the 0–vector of finite dimension

dρ, and the inequality is interpreted component-wise.

A2. For each l = 1, . . . , L and x ∈ X , Fl(·|x) ∈ F†l,x where F†l,x is a known collection

of proper one-dimensional distribution functions.

A3. For all u ∈ R
L

, F (u|x) = F (u|x′) for all x, x′ ∈ X †0 , where X †0 is a (possibly

empty) known subset of X .

A4. For each l = 1, . . . , L and all ul ∈ R, Fl(ul|x) = Fl(ul|x′) for all x, x′ ∈ X †l , where

X †l is a (possibly empty) known subset of X .

Remark 3.2. The different forms of A1–A4 provide flexibility in specifying the ad-

missible set. The independence condition in Proposition 2.2 falls under both A3 and
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A4, since L = 1 in that case. The median independence condition in Proposition 2.2

could be included as either A1 or A2—see Example 3.3. The symmetry condition in

Proposition 2.2 can also be included as A2—see Example 3.4. In Proposition 2.5, the

marginal conditional independence restriction would be classified under A4, while the

joint conditional independence restriction would be classified under A3. The statement

of A3 and A4 allows the global conditional independence in those propositions to be

weakened to local (for x ∈ X †0 and/or X †l ) conditional independence statements in the

manner considered by Chesher (2003, 2005, 2007).

An example of an assumption that one might wish to consider which cannot be char-

acterized as one of A1–A4 is positive quadrant dependence (Lehmann, 1966) between

the components of U in a case where L > 1, say L = 2. Positive quadrant dependence

is satisfied (by definition) if and only if F (u1, u2) ≥ F1(u1)F2(u2) for all (u1, u2) ∈ R
2
,

where I have suppressed covariates simply for notational ease. This condition cannot

be expressed as a finitely-valued function ρ, nor can it characterized as placing a re-

striction solely on the margins of F . Hence, while A1–A4 are general, they are not

vacuous.

The h component of S = (h, F ) is a real-valued function (the “structural function”)

with domain contained in X ×RL. As a function, h(x, ·) maps every u in its domain

to exactly one value of y. However, the domain of h(x, ·) could be a proper subset of

RL so that there are values of u such that h(x, u) does not map to any value of y,

i.e. the model can be incoherent in the sense of Chesher and Rosen (2012). To satisfy

observational equivalence, F must necessarily place 0 probability on sets of such u. On

the other hand, the assumption that h is a well-defined function requires the model to

be complete, in the sense that h generates a unique value of y for each (x, u), which

rules out models with multiple equilibria. The researcher only considers structures

with h components lying in some admissible set denoted by H†.
The identified set S? is the collection of all admissible h and F that generate the

observed distribution of Y , conditional on X. Formally,

S? ≡
{
S = (h, F ) : F ∈ F†, h ∈ H†

and ωy|x(h, F ) = P[Y ≤ y|X = x] for all y ∈ Y, x ∈ X
}
. (21)

For a fixed h ∈ H†, let F?(h) ≡ {F : (h, F ) ∈ S?} denote the profiled identified set for

F , given h. Then the profiled identified set for h can be written as H? ≡ {h ∈ H† :

F?(h) is nonempty}. The researcher’s object of interest is a function π(h, F ) of the

entire structure, which is assumed to take values in a finite dimensional space R
dπ

. A
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simple example of π is π(h, F ) = h, if h is finitely parameterized. However, π can also

represent causal parameters that depend not only on h but also on F .

Remark 3.3. For the ordered discrete response model of Section 2, the average struc-

tural function at x? given in (10) is an example of a function π of (h, F ) that depends

on both h (fully determined by g in this case) and F . Observe that, like ωy|x, ASF

only depends on F for a fixed h through the values of F on a subset of its domain,

in particular {F (g1(x
?)|xk) : k ∈ 1, . . . ,K}. This limited dependence of π on F is

important, and will be incorporated into Theorem 1 ahead.

The identified set associated with a given parameter π is denoted by P? = {π(h, F ) :

(h, F ) ∈ S?}. The next theorem shows how the subdistribution extension lemma can

be applied to characterize P? for the general model developed in this section.

Theorem 1 (The general method of PIES). Let Y ⊆ Y and X ⊆ X . Suppose that

F† can be represented as in Assumption A. For any h ∈ H†, let {Ux(h) : x ∈ X} be

any collection of subsets of R
L

for which the following statements are true:

U1. Ux(h) = U1,x(h) × · · · × UL,x(h) where Ul,x(h) ⊆ R is closed and such that

{−∞,+∞} ⊆ Ul,x(h) for each l = 1, . . . , L and every x ∈ X .

U2. There exist functions ρ, π, and {ωy|x : y ∈ Y, x ∈ X} such that for every F ∈ F :

ωy|x(h, F ) = ωy|x
(
h, F (·|x)|Ux(h)

)
, (U2.ω)

ρ(h, F ) = ρ
(
h,
{
F (·|x)|Ux(h) : x ∈ X

})
(U2.ρ)

π(h, F ) = π
(
h,
{
F (·|x)|Ux(h) : x ∈ X

})
. (U2.π)

U3. For each l = 1, . . . , L and every x ∈ X , there exists a collection of subdistributions

F†l,x with common domain Ul,x(h) such that F†l,x is reducible to F†l,x and F†l,x is

extendible to F†l,x.

U4. Ux(h) = Ux′(h) for all x, x′ ∈ (X ∩ X †0 ).

U5. Ul,x(h) = Ul,x′(h) for all x, x′ ∈ (X ∩ X †l ) and each l = 1, . . . , L.

If p ∈ P? then there exists an h ∈ H† and function F (·|x) : Ux(h)→ [0, 1] for each
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x ∈ X such that:

ωy|x
(
h, F (·|x)

)
= P[Y ≤ y|X = x] for all y ∈ Y and x ∈ X , (T1.1)

F (·|x) is an L-dimensional subdistribution for each x ∈ X , (T1.2)

ρ
(
h,
{
F (·|x) : x ∈ X

})
≥ 0dρ , (T1.3)

F l(·|x) ∈ F†l,x for each l = 1, . . . , L and x ∈ X . (T1.4)

F (u|x) = F (u|x′) for every x, x′ ∈ (X ∩ X †0 ) and all u ∈ Ux(h). (T1.5)

F l(ul|x) = F l(ul|x′) for every x, x′ ∈ (X ∩ X †l ) and all ul ∈ Ul,x(h),

where F l(·|x) is the lth margin of F (·|x). (T1.6)

π
(
h,
{
F (·|x) : x ∈ X

})
= p. (T1.7)

If X = X and Y = Y, then the existence of an h ∈ H† and functions F (·|x) : Ux(h)→
[0, 1] (for each x ∈ X ) satisfying (T1.1)–(T1.7) also implies that p ∈ P?.

The proof of Theorem 1, which is given in Appendix C, is an extensive generalization

of the proofs of Propositions 2.1, 2.2 and 2.5 in Section 2. The theorem clarifies the role

of the subdistribution extension lemma in providing characterizations of the identified

set for the parameter π. However, several considerations need to be made for Theorem

1 to achieve the same practicality as the low-level results in Section 2.

The first consideration is the choice of the sets {Ux(h) : x ∈ X}. Observe that

conditions U1–U5 are satisfied trivially by taking Ux(h) = R
L

for every x ∈ X and

any h ∈ H†. However, this choice of {Ux(h) : x ∈ X} renders Theorem 1 essentially a

tautology, and finding functions F (·|x) that satisfy (T1.1)–(T1.7) remains as difficult

as finding proper distributions satisfying these conditions. On the other hand, if Ux(h)

can be taken to be finite for every x ∈ X and h ∈ H†, then Theorem 1 reduces the

infinite-dimensional problem to a potentially finite-dimensional one. This was the case

in the ordered discrete response models discussed in Section 2, and is also the case for

the Roy model discussed in Section 4.

The cardinality of a given Ux(h) is determined by conditions U2 and U3. In par-

ticular, for Ux(h) to satisfy U2 and still have finite cardinality requires each of ωy|x

(for any y ∈ Y, x ∈ X ), ρ and π to depend on (h, F ) only through the value of F on a

finite subset of its domain. This condition was satisfied in the ordered discrete response

model of Section 1, and will also be satisfied in the Roy model discussed in Section 4.

However, there are modifications of that analysis for which this condition would not

hold. For example, choosing π(h, F ) = EF (U1) in the ordered discrete response model

of Section 2 would not lead to a function π that depends on F at only a finite number
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of points, since the expectation of a random variable depends on its distribution at al-

most all points of its support. For the same reason, incorporating mean-zero conditions

into ρ will not in general lead to a function ρ that depends on F through only a finite

number of values. It is possible that one could circumvent these drawbacks through

an approximation argument, but I leave such a development for future work. These

limitations comprise the main weaknesses of the PIES approach. Further discussion of

the merits of PIES relative to other methods proposed in the literature is provided in

Section 5.

Even if ωy|x, π, and ρ have these type of finite representations for a given (y, x) pair,

(T1.1) requires consideration of all y ∈ Y and x ∈ X . Hence, for Ux(h) to be finite

also generally requires Y and X to be finite. This restricts Theorem 1 to only provide

practical sharp characterizations for models in which both Y and X are discrete. I do

not view this as a serious drawback for two reasons. First, as shown in Theorem 1, PIES

still provides a tractable characterization for outer identified sets by taking Y ⊆ Y and

X ⊆ X to be finite subsets of Y and X . Hence, with sufficient computing power, these

outer identified sets can be made arbitrarily close to the (sharp) identified set by taking

Y and X to be arbitrarily large subsets of Y and X . Any limitation in this regard is

purely computational. Second, the infinite cardinality of Y and X is only an issue in the

rarefied world of simulations, where it is presumed that the distribution of observables

is known without error. In practice, the empirical distribution of the observed data

is always discrete, even if Y and X are modeled as continuous random variables with

infinite support. It is reasonable to expect that outer sets constructed using all support

points of the empirical distribution will be consistent (in an appropriate sense) for the

sharp identified set in the population. A formal development of such an argument

requires statistical concerns that are important, but beyond the scope of the current

paper.

Putting aside these dimensionality issues, another important practical consideration

to Theorem 1 is whether the system of equations (T1.1)–(T1.7) can be reliably solved

for a given h ∈ H†. This was the case in the ordered discrete response models of

Section 2, where the corresponding system of equations were linear in F . Importantly,

the crucial subdistribution condition, (T1.2), always places a linear restriction on F ,

given a fixed h ∈ H†—recall Definition D. The conditional independence restrictions

(T1.5) and (T1.6) are also always linear for a fixed h ∈ H†. As a result, linearity of the

entire system in Theorem 1 requires that for a fixed h ∈ H†, each of ωy|x, ρ and π are

linear in the values of F . The same must also be true of whatever low-level condition

defines T1.4. These properties turns out to be satisfied for all of the models discussed

in this paper, although it is possible to think of examples where it is not satisfied. For
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instance, imposing the positive quadrant dependence condition mentioned in Remark

3.2 at a finite collection of (u1, u2) points would require ρ to be nonlinear. Hence, while

the linearity of these functions still allows for many interesting examples, including

those discussed in this paper, it need not always be satisfied. Theorem 1 is still valid

for cases in which this linearity fails, but it may be prohibitively difficult to implement

due to the difficulties involved in reliably solving non-convex programs.

An additional consideration that was highlighted in Proposition 2.4 is whether char-

acterizing the identified set for π can be rephrased as a series of optimization problems.

As stated, Theorem 1 would suggest that one needs to determine the existence of non-

existence of a solution to (T1.1) for every h ∈ H† and every p ∈ P?. However, if π is

scalar-valued and ωy|x, ρ and π are all linear functions of F (for a fixed h ∈ H†), then

one can, as in Proposition 2.4, determine P? by minimizing and maximizing π subject

to (T1.1)–(T1.6) once for each h ∈ H†, and then taking the union of all min/max

intervals. More generally, this is true if π is a continuous function of F (for a fixed

h ∈ H†) and if the constraint set represented by (T1.1)–(T1.6) is a closed and convex

set, see e.g. Theorem 4.22 of Rudin (1976). The proof of these statements follows the

same argument as in Proposition 2.4 and so is omitted.

Searching over every h ∈ H† could be computationally daunting in more compli-

cated models. Proposition 2.3 provided one way of ameliorating this issue by parti-

tioning the space of admissible structural functions into sets for which the domains of

F were order-invariant, in the sense discussed there. Using this scheme, Proposition

2.3 established that one only needs to consider a single representative function from

each order-invariant class. This property of PIES carries over to the more general

construction in Theorem 1, but a general statement appears to be inherently cumber-

some. Moreover, implementing such a computational scheme is necessarily application-

dependent, since it depends on the choice of H† and the general composition of the

model at hand. Hence, I only remark here that constructions similar to that discussed

in Proposition 2.3 can be used to greatly reduce the computational burden of the char-

acterization in Theorem 1, but I leave a more detailed discussion of the appropriate

algorithm for specific applications in future work.

3.3 Statistical Inference

This paper is about identification and the analysis therefore presumes that the popu-

lation distribution of the observable variables is known without error. In practice, this

population distribution must be estimated from a finite sample, which raises issues of

statistical inference. In this section, I observe that the characterization of the identified
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set provided by the PIES methodology can be rephrased in terms of moment equalities.

This enables the application of results from the recent literature on inference in con-

ditional and unconditional moment (in)equality models, such as Andrews and Soares

(2010), Bugni (2010), Canay (2010), Andrews and Barwick (2012), Andrews and Shi

(2013) and Romano et al. (2014).

For any h ∈ H†, let {Ux(h) : x ∈ X} denote a collection of sets satisfying conditions

U1–U5 in Theorem 1. Let θ ≡ (h, {F (u|x) : u ∈ Ux(h), x ∈ X}) denote the parameters

relevant to the characterization in Theorem 1. The identified set corresponding to θ is

given by

Θ? ≡
{
θ : h ∈ H? and F (u|x) ∈ F?(u|x) for all u ∈ Ux(h), x ∈ X

}
,

where F?(u|x) ≡ {F (u|x) : F ∈ F?} for any u ∈ R
L

and x ∈ X .37 Define the

admissible set of θ by

Θ† ≡
{
θ : h ∈ H† and {F (u|x) : u ∈ Ux(h), x ∈ X} satisfies (T1.2)–(T1.6)

}
.

Also, define the conditional moment functions

my|x(θ) ≡ E
[
1[Y ≤ y]− ωy|x(h, F (·|x))|X = x

]
for all y ∈ Y and x ∈ X . Then an implication of Theorem 1 is that

Θ? =
{
θ ∈ Θ† : my|x(θ) = 0 a.e. y ∈ Y, x ∈ X

}
. (22)

Andrews and Shi (2013) discuss and analyze test statistics for the null hypothesis

H0 : θ ∈ Θ? when Θ? has a representation like (22). Their results are directly applica-

ble here. Andrews and Shi (2013) recommend constructing confidence regions for θ?,

i.e. the value of θ that generated the data, by inverting this test. However, such an

inversion procedure raises practical difficulties if the dimension of θ is large, as it often

is in the PIES characterization. More tailored approaches for conducting inference on

functionals of θ, such as the feature π introduced in the previous section, have been

proposed by Bugni et al. (2014) and Kaido et al. (2015). These methods currently

only apply to models with unconditional moments, so in practice one would need to

transform the conditional moments into a set of unconditional moments, potentially

leading to a loss of information. Given the trajectory of current research on inference

37Note that Θ? may be an outer set (vs. a sharp identified set) if X and/or Y are proper subsets of X
and Y, but that this is immaterial for characterization (22) ahead.
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in moment (in)equality models, it seems likely that researchers in this area will soon

develop projection inference approaches that exploit full conditional moment condi-

tions. Torgovitsky (2015) shows in a related inference problem that for certain choices

of criterion functions, the projection inference approach of Bugni et al. (2014) involves

solving a convex program when the identified set is defined by a linear program. This is

important for practice, since convex programs can be solved reliably. The same finding

applies here. One useful feature of (22) is that it only involves moment equalities,

not inequalities, which simplifies many of the statistical considerations discussed in the

aforementioned papers.

4 PIES for the Two-Sector Roy Model

Consider the binary potential outcomes model

Y = DY1 + (1−D)Y0, (23)

where D ∈ {0, 1} is a binary treatment and (Y0, Y1) are latent potential outcomes corre-

sponding to different states of this treatment. The researcher observes (Y,D,X) where

X is a vector of covariates with respect to which certain exclusion and/or indepen-

dence conditions might be maintained. Analysis of this problem frequently maintains

a weakly separable selection equation

D = 1[UD ≤ gD(X)], (24)

where UD is a latent variable and gD is an unknown function (Vytlacil, 2002; Heckman

and Vytlacil, 2005). The two-sector Roy model refers to a specific case of this model

in which the effect of X on Y0 and Y1 is made explicit through a latent variable

formulation, say

Yd = gd(X,Ud) for d = 0, 1, (25)

where Ud, d = 0, 1 are latent random variables and gd, d = 0, 1 are unknown functions.

The functions gd can be parameterized, or a completely agnostic approach can be taken

by setting gd(X,Ud) = Ud, in which case Ud is simply a relabelling of the potential

outcome Yd.
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In the terminology of the previous section, (23)–(25) comprise a two-equation model

Y = Dg1(X,U1) + (1−D)g0(X,U0)

D = 1[UD ≤ gD(X)]

with two internal random variables (Y,D), one external random vector X, and an L =

3-dimensional vector of unobservables (U0, U1, UD). The model structure S = (h, F ) is

composed of the structural function h = (g0, g1, gD) and the conditional distribution

function F : R
3×X → [0, 1] for (U0, U1, UD). Assuming for concreteness that g0 and g1

are invertible in their latent components,38 a given structure S generates a distribution

of (Y,D) (conditional on X) through the relationships

PS [Y ≤ y,D = 0|X = x] = PS
[
U0 ≤ g−10 (x, y), UD > gD(x)|X = x

]
= F (g−10 (x, y),∞,∞|x)− F (g−10 (x, y),∞, gD(x)|x) (26)

and

PS [Y ≤ y,D = 1|X = x] = PS
[
U1 ≤ g−11 (x, y), UD ≤ gD(x)|X = x

]
= F (∞, g−11 (x, y), gD(x)|x). (27)

The right-hand sides of (26) and (27) provide expressions for what was called ωy|x(h, F )

in the previous section, noting the slight notation collision that now both Y and D

are parts of “Y ” from that section. Notice that, for a given h and (y, x) pair, both

(26) and (27) are linear in the values of F evaluated at a finite number of points. The

definition of the ω function in Theorem 1 follows immediately for any choice of Ux(h)

that contains the evaluation points in (26) and (27) for all (y, x) of interest.

If Y is continuously distributed, a typical restriction on h would be to assume that

g0 and g1 are additively separable in their respective error distributions, in which case

the invertibility maintained for (26) and (27) would be satisfied. If Y is a binary or

more generally ordered discrete outcome, one might adopt a specification for g0, g1 that

is similar to those in Section 2. Invertibility does not generally hold for these types

of specifications, so (26) and (27) would be replaced by forms similar to (P2.1) from

Section 2, but otherwise there is no conceptual difference. Mourifié et al. (2015) derived

analytic expressions for sharp identified sets of certain parameters in nonparametric

two-sector Roy models. The PIES approach provides a general method to compute

these sets that is also applicable to the type of semiparametric Roy models commonly

used in empirical work. However, the PIES procedure is computational, and does not

38As shown in Sections 2 and 3, this is not necessary for the analysis.
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provide analytic expressions for identified sets.

A commonly maintained identifying assumption in the two-sector Roy model is

that X is independent of the latent terms (U0, U1, UD), see e.g. Assumption 1 in

Eisenhauer et al. (2015). This can be imposed via the formalization in Assumption

A3. Using Assumption A4, one could refine this strategy by imposing conditional in-

dependence restrictions only on certain components of (U0, U1, UD). For both of these

strategies, these assumptions could be imposed in such a way that all or only part of

the components of X are used in these conditional independence statements. Much

additional flexibility is possible. When considering the binary selection equation (24),

it is common to maintain a nonparametric view of gD, in which case the marginal

distribution of UD can be normalized, with a typical choice being the uniform distribu-

tion on the [0, 1] interval. This type of normalization can be accommodated in PIES

through Assumption A2; see Example 3.1.

Implementing PIES for the two-sector Roy model is now a matter of deciding which

assumptions to impose and then appealing to Theorem 1. As a concrete example, write

X as X = (X0, X1, XD), where each of these subvectors has a constant term, and

all may have some components in common. Then assume that g0(X,U0) = X ′0β0 +

U0, g1(X,U1) = X ′1β1 + U1, and gD(X) = X ′DβD for some parameter vectors β =

(β0, β1, βD). Suppose in addition that each of these errors has median 0, conditional

on X. Let Y and X denote subsets of the supports of Y and X. For a fixed value of

β, define

U0,x(β) ≡ {y − x′0β0 : y ∈ Y} ∪ {0,±∞}

U1,x(β) ≡ {y − x′1β1 : y ∈ Y} ∪ {0,±∞}

and UD,x(β) ≡ {x′DβD, 0,±∞},

and define Ux(β) ≡ U0,x(β) × U1,x(β) × UD,x(β). Theorem 1 shows that if β is in

the identified set, then there exist functions F (·|x) : Ux(β) → [0, 1] that satisfy the

following linear system of equations:

F (y − x′0β0,∞,∞|x)− F (y − x′0β0,∞, x′DβD|x)

= P[Y ≤ y,D = 0|X = x] (28)

and F (∞, y − x′1β1, x′DβD|x) = P[Y ≤ y,D = 1|X = x] for all y ∈ Y, x ∈ X , (29)

F (·|x) is a 3–dimensional subdistribution for each x ∈ X , (30)

F (0,∞,∞|x) = F (∞, 0,∞|x) = F (∞,∞, 0|x) =
1

2
for all x ∈ X . (31)
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If Y = Y and X = X then the existence of a solution to this linear system provides

a sharp characterization, i.e. the only β for which it is satisfied are those that are

elements of the identified set. If Y and/or X are infinite, then the characterization can

be made arbitrarily close to sharp by making Y and/or X arbitrarily large subsets of Y
and/or X . The system of equations in (28)–(31) is just one example that corresponds

to a specific choice of assumptions. The generality of the PIES approach in Theorem

1 shows how this example can be tailored in many directions for specific applications.

5 Conclusion

This paper contains the development of a general procedure for constructing sharp

identified sets called partial identification by extending subdistributions, or PIES. The

PIES method is grounded in copula theory, and in particular uses a generalization of

Sklar’s (1959; 1996) multilinear interpolation lemma for subcopulas to determine when

an admissible, observationally equivalent distribution function can be reconstructed as

an extension of a lower-dimensional subdistribution function. This procedure is nat-

ural and intuitive, since it works directly with distribution functions, the properties

of which are widely understood from standard probability theory. I have shown that

applying PIES involves solving linear programming problems in at least two important

semiparametric nonlinear models: (i) An ordered discrete response model with pos-

sibly endogenous explanatory variables, and (ii) the two-sector Roy model. In work

in preparation, I show how to apply PIES to random coefficient binary response and

multinomial discrete choice models. There appear to be many other interesting appli-

cations as well.

It is methodologically important to have general computational procedures for com-

puting sharp identified sets. Sharp analytic characterizations of identified sets take

considerable effort to derive in even fairly simple models. While these characteriza-

tions can provide theoretical insights, practitioners cannot be expected to re-work such

results to suit the specific needs of their application. Moreover, the simulation results

presented in Section 2 suggest that even in a relatively simple semiparametric bivari-

ate binary response model, the sharp identified sets for the index parameters can have

wild and irregular shapes. (Indeed, it would be challenging enough to find analytic

expressions for some of the sets in Figures 2 and 3 for even a single distribution of

the observables, let alone in general.) The development of suitable computational ap-

proaches for characterizing sharp identified sets is a necessary ingredient for broadening

the empirical impact of partial identification analysis.39

39There is an argument to be made in favor of the simplicity of utilizing only outer identified sets. For
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Other authors have proposed different general methodologies for constructing sharp

identified sets. The frameworks that I am aware of are those using random set theory

(Beresteanu et al. (2011), Galichon and Henry (2011), Chesher and Rosen (2014a,b),

Chesher et al. (2013), Aradillas-Lopez and Rosen (2014)) and information theory

(Schennach, 2014).40 Ultimately, the utility of the PIES methodology relative to the

approaches advocated by these papers can only be judged retrospectively by the quan-

tity and quality of their subsequent applications. However, I will provide some brief

and admittedly speculative comments on their relative strengths as I understand them.

Schennach (2014) provides a discussion of her ELVIS approach compared to the ap-

proaches of Beresteanu et al. (2011) and Galichon and Henry (2011).

Unlike this paper, Beresteanu et al. (2011) and Schennach (2014) consider models

defined by finite sets of moment conditions. A benefit of this focus is that they can

directly consider mean and correlation restrictions, which appear to be less straight-

forward to impose using PIES. A drawback is that these approaches cannot easily

handle the types of independence restrictions commonly imposed in nonlinear mod-

els, since such restrictions require an infinite number of moment conditions.41 For the

same reason, these approaches are also unsuited to imposing shape restrictions (such

as symmetry) on the distribution of unobservables. The use of distributional shape

restrictions to shrink identified sets in semiparametric nonlinear models seems like a

particularly promising direction for future research.

The analysis of Galichon and Henry (2011) and Chesher and Rosen (2014b), who

consider characterizations based on the random set theory concept of a capacity func-

tional, seems to be more closely comparable to PIES. Both approaches consider the

entire distribution of the latent variables, rather than pre-specified moments. Galichon

and Henry (2011) only analyze models with unobservables that are finitely parame-

terized, which is different than the focus on semiparametric models emphasized here.

On the other hand, those authors (along with Beresteanu et al. (2011)) appear to be

example, Ciliberto and Tamer (2009) and Pakes (2010) are able to make substantive conclusions using outer
sets derived from revealed preference arguments. However, the lack of sharpness leaves open the tantalizing
possibility that even stronger conclusions could be reached without maintaining stronger assumptions by
finding a low-level characterization of the sharp identified set.

40Note that there are many other papers in the literature that employ computational approaches for
specific partially identified models. Many of these approaches reduce—like PIES—to linear programming
problems. Examples include Honoré and Lleras-Muney (2006), Honoré and Tamer (2006), Manski (2007,
2014), Molinari (2008), Kitamura and Stoye (2013), Freyberger and Horowitz (2014), and Lafférs (2015). The
focus of this discussion is on general approaches for constructing partially identified sets that are applicable
to large classes of models.

41Schennach (2014, Section 4.3) provides an extension of ELVIS to the case of an infinite number of
moment conditions by using an asymptotic approximation argument. In contrast, the application of PIES
to these types of restrictions often yields exact characterizations.
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primarily motivated by game theoretic models with multiple equilibria, which seems

to be an area in which random set theory approaches may have substantial theoretical

and practical advantages over PIES. Chesher and Rosen (2014b) consider models that

may have unobservables with distributions that are not finitely parameterized, and so

their aim is more directly comparable to the goals considered in this paper.

The practical differences between the method of Chesher and Rosen (2014b) and

the PIES approach in this paper appear to primarily turn on the relative difficulty of

the computational implementation. For Chesher and Rosen (2014b), the difficulty is

finding a way to approximate the uncountably infinite number of restrictions that com-

prise their characterization of the identified set. For the simulation exercises considered

by Chesher and Rosen (2014b, Section 4), the restrictions that need to be satisfied cor-

respond to the set of all closed intervals contained in [0, 1]. The authors address this by

using a relatively small and arbitrary grid of such intervals, which nevertheless appears

to provide a reasonably close outer approximation of the sharp identified set, although

this of course cannot be a theorem. The PIES approach faces a similar problem in

situations where the observed variables have an uncountably infinite support, since a

potentially infinite number of restrictions play a role in characterizing the identified set

for these cases. However, in contrast to Chesher and Rosen (2014b), these restrictions

are indexed by all possible realizations of the observed variables. This difference is im-

portant because in practice the empirical distribution associated with any given sample

of data provides only a finite number of support points. It is reasonable to expect that

under relatively weak conditions, sharp identified sets based on this discrete empirical

distribution will converge as the sample size increases to sharp identified sets based

on the population distribution. I leave a precise formulation of such a result to future

work.

One positive and very important quality that appears to be unique to PIES is the

ability to easily consider causal parameters that depend both on the structural function

(h in the preceding discussion) and the distribution of unobservables (F ). The authors

of the aforementioned papers tend to view F as a nuisance parameter to be eliminated

in the service of characterizing the identified set of h.42 However, causal parameters in

nonlinear models typically depend on the distribution of unobservables. PIES makes it

straightforward for a researcher to consider sharp identified sets for these parameters,

since it reduces the distribution of unobservables to a subdistribution, rather than

trying to eliminate it completely. The same does not appear to be true for the methods

proposed by the other papers. A related benefit that appears to be unique to PIES

42For example, Schennach (2014, pg. 364) explicitly describes the distribution of unobservables as an
infinite-dimensional nuisance parameter.
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is that, by more carefully considering the relationship between h and F , it provides a

method of reducing the computational problem of searching over all h, see Proposition

2.3. This is practically important, since simple grid searches become computationally

infeasible with even relatively small numbers of parameters. None of the other general

approaches appear to provide an obvious solution to this problem.

The point of this discussion is not to claim that PIES or any of the other cited

methods strictly dominates any one of the others. It would be naive to believe this to

be true. The utility of a given method must be judged in the context of the model and

empirical problem at hand. In this paper, I have provided two examples of widely used

empirical models to which the PIES method seems better suited than the frameworks

proposed in the aforementioned papers. Those papers contain examples for which the

opposite is true. The purpose of providing another general approach to characterizing

identified sets is to increase the size of the toolbox available to empirical researchers

seeking to apply partial identification methods. The applications of PIES in this paper

to the widely used ordered discrete response model, and to the two-sector Roy model,

should solidify its claim to be a useful part of this toolbox, without detracting from

any of the other tools already there.
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Appendix A Copula Theory

This section records some definitions and results from copula theory that are used in

the proof of Lemma 3.2. See Schweizer and Sklar (1983) and Nelsen (2006) for further

discussion.

An L-dimensional copula is similar to a distribution function, but defined instead

on [0, 1]L, and with margins equal to the identity function. A subcopula is like a copula,

but not necessarily defined on the entirety of [0, 1]L.

Definition C. Let U be a subset of [0, 1]L such that U = U1×· · ·×UL where Ul ⊆ [0, 1]

is such that {0, 1} ⊆ Ul for each l. An L-dimensional subcopula is a function C with

domain U such that

C1. C is L-increasing.

C2. C(u) = 0 for any u ∈ U that has at least one component equal to 0.

C3. C(u) = ul for any u = (u1, . . . , uL) ∈ U that has all components except the lth

equal to 1.

An L-dimensional copula (or, for emphasis, a proper L-dimensional copula) is an

L-dimensional subcopula for which U = [0, 1]L.

The most important result in copula theory is a two-part theorem due to Sklar

(1959) (see e.g. Nelsen (2006) for a modern treatment). The first part of Sklar’s The-

orem shows that any distribution function can be decomposed into its marginal distri-

butions and a possibly non-unique copula. The second part shows that conversely, a

copula combined with a collection of L one-dimensional distribution functions generates

an L-dimensional distribution function.

Sklar’s Theorem.

1. Let F be a proper L-dimensional distribution function with margins Fl : R →
[0, 1] defined as in Definition 3.2. Then there exists a proper L-dimensional copula

C such that F (u) = C(F1(u1), . . . , FL(uL)) for all u ≡ (u1, . . . , uL) ∈ R
L

. If Fl is

continuous on R for every l = 1, . . . , L, then C is unique, otherwise C is uniquely

determined on {F1(u1) : u1 ∈ R} × · · · × {FL(uL) : uL ∈ R}.

2. If C is a proper L-dimensional copula and Fl are proper one-dimensional dis-

tribution functions for each l = 1, . . . , L, then the function F : R
L → [0, 1] :

F (u) ≡ C(F1(u1), . . . , FL(uL)) is a proper L-dimensional distribution function

with margins Fl for each l = 1, . . . , L.
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The analysis in this paper uses the second part of Sklar’s Theorem, which is easy

to prove. It does not use the first part of Sklar’s Theorem as stated, but it does make

important use of the main lemma employed in Sklar’s original proof of the first part.

The proof of this lemma for L = 2 can be found in Nelsen’s (2006) recent monograph on

copula theory (see Lemma 2.3.5). Sklar (1996) provides a proof for higher dimensions;

see also the discussion of Theorem 6.2.6 in Schweizer and Sklar (1983).

Sklar’s Lemma. Let C be an L-dimensional subcopula with domain U . Then there

exists a (typically non-unique) proper L-dimensional copula C such that C(u) = C(u)

for all u ∈ U .

Appendix B Proof of Lemma 3.2 and Corollary 3.1

The proof of Lemma 3.2 is characteristically different in the L = 1 and L > 1 cases.

Since the L > 1 case makes use of the L = 1 case, I begin with the latter.

Proof of Lemma 3.2 (case L = 1). Suppose that F is a one-dimensional subdis-

tribution with domain U that is closed and contains {−∞,+∞}. A proper one-

dimensional distribution function that extends F can be constructed as follows, al-

though many other constructions are possible.

First, let U denote the set U \ {−∞,+∞} and let u ≡ inf U and u ≡ supU , noting

that u, u ∈ U , since U is closed. Partition the complement of U , i.e. Uc ≡ R \ U into

three sets

Uc = Uc− ∪ U
c
0 ∪ U

c
+, (32)

where Uc− ≡ {u ∈ U
c

: u < u}, Uc+ ≡ {u ∈ U
c

: u > u} and Uc0 = {u ∈ Uc : u ≤ u ≤ u}.
Then define F : R→ [0, 1] as

F (u) =



0 if u = −∞

F (u)eu−u if u ∈ Uc−
`(u; [au, bu]) if u ∈ Uc0
F (u) if u ∈ U

F (u) + (1− F (u))(1− eu−u) if u ∈ Uc+
1 if u = +∞,

(33)

where au ≡ sup{u′ ∈ U : u′ ≤ u}, bu ≡ inf{u′ ∈ U : u′ ≥ u}, and `(·; [au, bu]) is the
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linear function that interpolates F between au and bu, i.e.

`(u; [au, bu]) ≡ F (au) +

(
F (bu)− F (au)

bu − au

)
(u− au), (34)

noting that au < bu for all u /∈ U . In words, F is equal to F on U , it has the shape

of an exponential distribution for u ∈ Uc− and u ∈ Uc+, and it linearly interpolates F

on Uc0. See Figure 10. It is straightforward to verify that F is a proper, non-defective,

one-dimensional distribution function and that, by construction, F (u) = F (u) for

every u ∈ U . It is also straightforward to verify that if F is continuous on U , then F

continuous on its entire domain. Q.E.D.

Proof of Lemma 3.2 (case L > 1). Suppose that L > 1 and let U and F be as in

the statement of the lemma. For l = 1, . . . , L let F l be the lth margin of F , i.e.

F l : Ul → [0, 1] : F l(ul) ≡ F (+∞, . . . ,+∞, ul,+∞, . . . ,+∞).

Lemma 3.1 shows that each F l is itself a one-dimensional subdistribution function.

Next, define the set

T ≡ T1 × · · · × TL ≡ {F 1(u1) : u1 ∈ U1} × · · · × {FL(uL) : uL ∈ UL},

and define the function C : T → [0, 1] by

C(F 1(u1), . . . , FL(uL)) ≡ F (u1, . . . , uL).

Note that C is well-defined, because if u, u′ are such that F l(ul) = F l(u
′
l) for all l, then

F (u) = F (u′), see Lemma 2.10.4 of Nelsen (2006) or Lemma 6.1.9 of Schweizer and

Sklar (1983).

I claim that C is a subcopula on T . To see this, first note that T ⊆ [0, 1]L and

that {0, 1} ⊆ Tl for each l, since by assumption {−∞,+∞} ∈ Ul with F l(−∞) = 0

and F l(+∞) = 1. Next, notice that

C(0, F 2(u2), . . . , FL(uL)) = C(F 1(−∞), F 2(u2), . . . , FL(uL))

≡ F (−∞, u2, . . . , uL) = 0,

and similarly if any other collection of the arguments of C are 0. This shows that C2
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is satisfied. Condition C3 is satisfied because, by construction,

C(F 1(u1), 1, . . . , 1) = C
(
F 1(u1), F 2(+∞), . . . , FL(+∞)

)
≡ F (u1,+∞, . . . ,+∞) ≡ F 1(u1),

and similarly for any other index l = 2, . . . , L.

To see that C satisfies C1, consider any t′, t′′ ∈ T such that t′ ≤ t′′. Then

there exist u′, u′′ ∈ U such that u′ ≤ u′′ with t′ = (F 1(u
′
1), . . . , FL(u′L)) and t′′ =

(F 1(u
′′
1), . . . , FL(u′′L)).43 Consider the sets of vertices Vrt(t′, t′′) and Vrt(u′, u′′), and

the function ξ : Vrt(t′, t′′) → Vrt(u′, u′′) defined by ξ(t) = (ξ1(t1), . . . , ξL(tL)), where

for each l,

ξl : {t′l, t′′l } → {u′l, u′′l } : ξl(tl) ≡

u′l if tl = t′l

u′′l if tl = t′′l .

Then, by construction, ξ is bijective and sgn(t′,t′′)(t) = sgn(u′,u′′)(ξ(t)) for every t ∈
Vrt(t′, t′′). Moreover, C(t) = F (ξ(t)) for any t ∈ Vrt(t′, t′′). Hence,

VolC(t′, t′′) ≡
∑

t∈Vrt(t′,t′′)

sgn(t′,t′′)(t)C(t)

=
∑

t∈Vrt(t′,t′′)

sgn(u′,u′′)(ξ(t))F (ξ(t))

=
∑

u∈Vrt(u′,u′′)

sgn(u′,u′′)(u)F (u) ≡ VolF (u′, u′′), (35)

where the first equality is by definition, the second equality imposes the above obser-

vations, the third equation changes the indexing variable from t to u = ξ(t) by using

the bijectivity of ξ and Vrt(t′, t′′) = ξ−1(Vrt(u′, u′′)), while the final equality is by def-

inition. By assumption, VolF (u′, u′′) ≥ 0 since u′, u′′ ∈ U with u′ ≤ u′′. Hence, by

(35), VolC(t′, t′′) ≥ 0 as well. Since t′, t′′ were arbitrary elements of T with t′ ≤ t′′, this

shows that C satisfies C1.

Since C satisfies C1–C3, it is an L-dimensional subcopula with domain T . By

Sklar’s Lemma, C can be extended (perhaps non-uniquely) to a proper L-dimensional

copula C with domain [0, 1]L such that C(t) = C(t) for every t ∈ T . Moreover,

the L = 1 case of the current lemma shows that for each l there exists a proper, non-

43Specifically, note that by the definition of Tl, there exists at least one u′l such that t′l = F l(u
′
l). If t′′l = t′l,

then take u′′l = u′l. Otherwise, if t′′l > t′l, then let u′′l be any such that t′′l = F l(u
′′
l ). This choice ensures that

u′l ≤ u′′l for each l, since each F l is weakly increasing.
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defective, one-dimensional distribution function Fl : R→ [0, 1] such that Fl(u) = F l(u)

for all ul ∈ Ul. Define the function

F : R
L → [0, 1] : F (u) = C(F1(u1), . . . , FL(uL)). (36)

Since each Fl is a proper one-dimensional distribution function and C is a proper

copula, Sklar’s Theorem shows that F is a proper L-dimensional joint distribution

function. Moreover, F is an extension of F , since for any u ∈ U ,

F (u) ≡ C (F1(u1), . . . , FL(uL))

= C
(
F 1(u1), . . . , FL(uL)

)
= C

(
F 1(u1), . . . , FL(uL)

)
= F (u).

Finally, notice that because copulas are continuous (Theorem 2.2.4 of Nelsen (2006))

the non-defectivity of each Fl implies that F is non-defective as well. In addition, if

F l is continuous on Ul for each l, so that each Fl can be taken to be continuous, then

the continuity of C implies that F is also continuous. This establishes the claims of

the lemma. Q.E.D.

Proof of Corollary 3.1. The case where L = 1 follows tautologically from the as-

sumption and definition of extendibility, so assume that L > 1. Follow the proof of

Lemma 3.2 up to (36). By assumption, for each l = 1, . . . , L, there exists an Fl ∈ Fl
such that Fl(ul) = F l(ul) for each ul ∈ Ul. Then defining F as in (36) with these

margins Fl for l = 1, . . . , L and appealing to Sklar’s Theorem shows that F is a

proper, non-defective, L-dimensional distribution function with margins Fl ∈ Fl for

each l = 1, . . . , L. Q.E.D.

Appendix C Proof of Theorem 1

Suppose that p ∈ P?. By definition, there exists an h ∈ H? and an F ∈ F?(h) such

that π(h, F ) = p. For every x ∈ X and u ∈ Ux(h), let F (u|x) = F (u|x). Then

1. Condition U1 implies that (T1.2) is satisfied, since the restriction of any distri-

bution function to a subset satisfying the properties of Ux(h) is a subdistribution

on that subset.

2. Condition U2, F ∈ F?(h), and A1 imply that (T1.1), (T1.3) and (T1.7) are

satisfied.

3. Condition U3 and A2 imply that (T1.4) is satisfied.
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4. Condition U4 and A3 imply that (T1.5) is satisfied.

5. Condition U5 and A4 imply that (T1.6) is satisfied.

Hence, there exists an h ∈ H† and functions F (·|x) : Ux(h) → [0, 1] for x ∈ X that

satisfy (T1.1)–(T1.7).

Conversely, suppose that X = X , Y = Y and that there exists an h ∈ H† and

functions F (·|x) : Ux(h) → [0, 1] for x ∈ X such that (T1.1)–(T1.7) are satisfied. As

with the propositions in Section 2, the proof that p ∈ P? will use an extension argument

based on Lemma 3.2 and Corollary 3.1. Given the general nature of the theorem, the

extension argument will be conducted separately for different x ∈ X , so I will first

partition X in a particular way.

To this end, observe first that, necessarily X †0 ⊆ X
†
l for all l = 1, . . . , L, given their

definitions in A3 and A4. Let L ⊆ {1, . . . , L} denote a subset of the integers between

1 and L, and let L denote the collection of all such subsets L. In particular, note that

∅ ∈ L. For any L ∈ L, define X †L ≡ {x ∈ X \X
†
0 : x ∈ X †l for all l ∈ L}. Then X can be

partitioned into {X †0}∪ {X
†
L : L ∈ L}. That is, every x ∈ X satisfies exactly one of the

following conditions: (i) x ∈ X †0 , (ii) x /∈ X †0 but x ∈ X †l for some non-empty subset L
of l ∈ {1, . . . , L}, or (iii) x /∈ X †0 and x /∈ X †l for every l, i.e. x ∈ X †L with L = ∅.

Now, fix an arbitrary x ∈ X †0 . Then F (·|x) is a subdistribution with domain Ux(h)

by (T1.2) and F l(·|x) ∈ F†l,x for each l = 1, . . . , L by (T1.4). Given U3, Corollary

3.1 implies that there exists a proper L-dimensional distribution function F̃0 such that

F̃0(u) = F (u|x) for all u ∈ Ux(h), and such that the lth margin of F̃0 is in F†l,x for

every l = 1, . . . , L. Define F0 : R
L × X †0 → [0, 1] : F0(u|x) = F̃0(u). Observe that A2

and A3 together require that F†l,x = F†l,x′ for all x, x′ ∈ X †0 . Hence, the lth margin of

F0(·|x) is an element of F†l,x = F†l,x for all x ∈ X †0 . In addition, F0(u|x) = F̃0(u) =

F (u|x) = F (u|x) for all x ∈ X †0 and u ∈ Ux(h), by U4 and (T1.5).

Next, let L be an element of L (possibly the emptyset) and fix an arbitrary x ∈ X †L
(if any exist). For each l ∈ L (if any), let F l(·|x) be the lth margin of F (·|x), which is

a one-dimensional subdistribution function, given U1 and (T1.2). By U3 and (T1.4),

for each l ∈ L there exists a function F̃l : R → [0, 1] such that F̃l(u) = F l(u|x) for

every u ∈ Ul,x(h) and such that F̃l ∈ F†l,x. Observe that A2 and A4 together require

that F†l,x = F†l,x′ for all x, x′ ∈ X †l and every l = 1, . . . , L. Hence, F̃l(u) is an element

of F†l,x = F†l,x for all l ∈ L and x ∈ X †L ⊆ X
†
l . In addition, F̃l(u) = F l(u|x) = F l(u|x)

for all x ∈ X †L, all u ∈ Ul,x(h), and each l ∈ L. Hence, for each x ∈ X †L, the singleton

set {F l(·|x)} is extendible to the singleton set {F̃l} for every l ∈ L, while for every

l /∈ L, (T1.4) and U3 imply that the singleton set {F l(·|x)} is extendible to F†l,x.

Given (T1.2), Corollary 3.1 then implies that for each x ∈ X †L, there exists a proper
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L-dimensional distribution function FL(·|x) such that FL(u|x) = F (u|x) for all u ∈ R
L

,

and such that the lth margins of FL(·|x)—call them Fl,L(·|x)—are equal to F̃l for every

l ∈ L, and elements of F†l,x for every l /∈ L. It follows that Fl,L(·|x) ∈ F†l,x for every

l = 1, . . . , L and all x ∈ X †l , and that Fl,L(u|x) = F̃l(u) = Fl,L(u|x′) for every l ∈ L
and all x, x′ ∈ X †l .

Finally, combine these constructions together into the function

F : R
L ×X → [0, 1] : F (u|x) =

F0(u|x) if x ∈ X †0
FL(u|x) if x ∈ X †L.

(37)

Observe that F is well-defined through (37), since X †0∪{X
†
L : L ∈ L} forms a partition of

X . Also observe that, given the previous discussion, it is known that F (u|x) = F (u|x)

for all u ∈ Ux(h) and all x ∈ X . In addition, the previous discussion already showed

that F satisfies A2–A4. Given (T1.3), U2, and the established fact that each F (·|x)

extends each F (·|x), it is also known that ρ(h, F ) ≥ ~0, so that A1 is satisfied. Hence,

F ∈ F†. Moreover, U2, (T1.1), and the assumption that Y = Y,X = X imply that

ωy|x(h, F ) = P[Y ≤ y|X = x] for all y ∈ Y and x ∈ X , so that F ∈ F?(h). Lastly, U2

and (T1.7) imply that π(h, F ) = p which, since F ∈ F?(h) and h ∈ H†, implies that

p ∈ P?.
Q.E.D.
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Exogenous X1 Endogenous X1 (Y2)

Assumption [1] [2] [3] [4] [5] [6] [7] [8] [9]

med(U1|X1, X2) = 0 X X X
U1|X1, X2 symmetric around 0 X X
U1⊥⊥(X1, X2) X
med(U1|X2, X3) = 0 X X X X X X
U1|X2, X3 symmetric around 0 X X
U1⊥⊥(X2, X3) X X X X X
Y2 = 1[g21(X2, X3) > U2] X
(U1, U2)⊥⊥(X2, X3) X X X
Y2 = 1[π0 + π2X2 + π3X3 > U2] X X
med(U2|X2, X3) = 0 X X
U2|X2, X3 symmetric around 0 X

Table 1: Assumptions used in the binary response model simulations. Specifications [1]–
[3] model only the outcome equation and assume that X1 and X2 are exogenous, using
increasing concepts of exogeneity. Specifications [4]–[6] allow for X1 (now called Y2) to
be endogenous and place restrictions on the relationship between (X2, X3) and U1. These
specifications can be seen as a single equation semiparametric instrumental variables model
with excluded instrument X3. Specification [7] adds a nonparametric first stage equation
and imposes independence between (X2, X3) and (U1, U2). Specification [8] imposes a linear-
in-parameters parametric form for this first stage equation. Specification [9] additionally
imposes conditional symmetry on both U1 and U2.
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(K2, K3) (3, 3) (5, 3) (3, 5) (5, 5)
ATE? 0.218 0.234 0.218 0.234

[1] [ 0.052, 0.481] [ 0.031, 0.491] [ 0.052, 0.480] [ 0.031, 0.490]

[2] [ 0.065, 0.429] [ 0.039, 0.427] [ 0.065, 0.428] [ 0.039, 0.426]

[3] { 0.218} { 0.234} { 0.218} { 0.234}

[4] [-0.243, 0.757] [-0.254, 0.735] [-0.219, 0.754] [-0.238, 0.733]

[5]
[-0.173, -0.027]
∪ [ 0.027, 0.685]

[-0.189, -0.030]
∪ [ 0.030, 0.660]

[-0.109, -0.053]
∪ [ 0.053, 0.638]

[-0.119, -0.060]
∪ [ 0.060, 0.615]

[6]
[-0.173, -0.027]
∪ [ 0.027, 0.666]

[-0.189, -0.030]
∪ [ 0.030, 0.629]

[-0.109, -0.053]
∪ [ 0.053, 0.616]

[-0.119, -0.060]
∪ [ 0.060, 0.583]

[7] [ 0.027, 0.658] [ 0.030, 0.569] [ 0.053, 0.569] [ 0.060, 0.521]

[8] [ 0.027, 0.658] [ 0.030, 0.569] [ 0.053, 0.569] [ 0.060, 0.521]

[9] [ 0.027, 0.629] [ 0.030, 0.544] [ 0.053, 0.543] [ 0.060, 0.499]

Table 2: Sharp identified sets for the specifications listed in Table 1, for several values of (K2, K3). The supports for
different values of (K2, K3) are given in (8). Note that the second header row of the table lists the true value of the
average treatment effect which varies with K2. As a result, the sets in the second and fourth columns are not necessarily
strict subsets of those in (respectively) the first and third columns.
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Figure 1: Sharp identified sets for (β0, β1) under specifications [1]–[3] in Table 1 with different
choices of K2 and K3. The shaded area indicates the identified set. The black hash mark is
placed at (β?0 , β

?
1) = (.5,−.75).
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Figure 2: Sharp identified sets for (β0, β1) under specifications [4]–[6] in Table 1.
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Figure 3: Sharp identified sets for (β0, β1) under specifications [7]–[9] in Table 1.
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Figure 4: Sharp lower bounds for the ATE at a given fixed value of (β0, β1) corresponding
to the sharp identified sets of (β0, β1) in Figure 1. Darker regions represent larger lower
bounds.
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Figure 5: Sharp upper bounds for the ATE at a given fixed value of (β0, β1) corresponding
to the sharp identified sets of (β0, β1) in Figure 1. Darker regions represent smaller upper
bounds.
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Figure 6: Sharp lower bounds for the ATE at a given fixed value of (β0, β1) corresponding
to the sharp identified sets of (β0, β1) in Figure 2. Darker regions represent larger lower
bounds.
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Figure 7: Sharp upper bounds for the ATE at a given fixed value of (β0, β1) corresponding
to the sharp identified sets of (β0, β1) in Figure 2. Darker regions represent smaller upper
bounds.
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Figure 8: Sharp lower bounds for the ATE at a given fixed value of (β0, β1) corresponding
to the sharp identified sets of (β0, β1) in Figure 3. Darker regions represent larger lower
bounds.
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Figure 9: Sharp upper bounds for the ATE at a given fixed value of (β0, β1) corresponding
to the sharp identified sets of (β0, β1) in Figure 3. Darker regions represent smaller upper
bounds.
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0

1

Figure 10: An example of the construction used in Lemma 3.2. The set U is shown in bold
on the horizontal axis and the subdistribution F is plotted in bold on its domain U . On
U , F must be chosen to match F . In between the smallest and largest elements of U , F
is chosen to linearly interpolate between values of F . Outside of this range, F is chosen to
have the shape of an exponential distribution. Many other constructions are possible.
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