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Abstract

In models defined by unconditional moment restrictions, specification tests are

possible and estimators can be ranked in terms of efficiency whenever the number of

moment restrictions exceeds the number of parameters. We show that a similar re-

lationship between potential refutability of a model and semiparametric efficiency is

present in a much broader class of settings. Formally, we show a condition we name

local overidentification is required for both specification tests to have power against

local alternatives and for the existence of both efficient and inefficient estimators of

regular parameters. Our results immediately imply semiparametric conditional mo-

ment restriction models are typically locally overidentified, and hence their proper

specification is locally testable. We further study nonparametric conditional mo-

ment restriction models and obtain a simple characterization of local overidentifi-

cation in that context. As a result, we are able to determine when nonparametric

conditional moment restriction models are locally testable, and when plug-in and

two stage estimators of regular parameters are semiparametrically efficient.
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nonparametric conditional moment restrictions.
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1 Introduction

Early research on identification recognized the possibility that the distribution P of the

observed data might not belong to the set of distributions P implied by the posited

model (Fisher, 1922). Specifications for which this prospect existed were named obser-

vationally restrictive or overidentified by Koopmans and Riersol (1950), who emphasized

such models could in principle be refuted by the data. As underscored by Koopmans

and Riersol (1950), however, being observationally restrictive is a necessary but not suf-

ficient condition for testability, with examples existing of models that are simultaneously

overidentified and untestable (Romano, 2004).

Fortunately, the gap between overidentification and testability proved to be small in

the generalized method of moments (GMM) framework. In work originating with An-

derson and Rubin (1949) and Sargan (1958), and culminating in Hansen (1982), overi-

dentification in unconditional moment restriction models was equated with the number

of moment restrictions exceeding the dimension of the parameter of interest. Under mild

regularity conditions, such a surplus of restrictions was shown to enable the construction

of both specification tests and more efficient estimators. While perhaps intuitive, the

discovery that a simple common condition is instrumental for both specification testing

and the availability of more efficient estimators is upon introspection not obvious. Is this

close link between efficiency and potential refutability of the GMM model coincidental?

Or is it reflective of a deeper principle applicable to a broader class of models?

The need to elucidate the relationship between specification testing, semiparamet-

ric efficiency, and overidentification is saliently illustrated by the literature studying

nonparametric and semiparametric models. In the latter context, diverse definitions

of overidentification exist whose mutual consistency is unclear. Florens et al. (2007),

for instance, identifies overidentification with specification testing and states “... the

term overidentification is ill-chosen. If one defines it precisely, one actually obtains the

notion of a hypothesis ... This identity between overidentification and hypothesis ex-

plains why the term overidentification is associated with the idea of a test”. In contrast,

Powell (1994) defines just identification in terms more closely linked to estimation “...

in a nonparametric model, the parameters of interest can be said to be just-identified,

in that they are defined by a unique functional of the joint distribution of the data”.

Consistent with Powell (1994), Newey and Powell (1999) in turn relate overidentifica-

tion to efficiency considerations in two stage estimation problems by asserting “... the

efficient estimator for a given first step nonparametric estimator will often be fully ef-

ficient, attaining the semiparametric efficiency bound for the model ... Full efficiency

occurs because the first step is just identified ...”. While these different definitions of

overidentification are concordant in the context of GMM, their compatibility in non-

parametric and semiparametric models is to the best of our knowledge unknown. Are
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these views of overidentification in fact implications of a common condition as in GMM?

If such a common condition is indeed available, is it then simple enough to assess when

nonparametric conditional moment restriction models are overidentified?1

In this paper, we introduce a concept we name local overidentification and show

that it is in fact responsible for an inherent link between specification testing and semi-

parametric efficiency analysis that is present in models far beyond the scope of Hansen

(1982). The notion of local overidentification arises naturally from the study of the

limiting experiment generated by parametric perturbations to a (data) distribution P

that belongs to the model P (LeCam, 1986). As is well understood in the literature

on limiting experiments, a fundamental role is played by the tangent set T (P ), which

consists of the scores corresponding to the parametric submodels of P that contain P

(Bickel et al., 1993). Heuristically, T (P ) represents the directions from which P may

be approached from within the model P. In particular, whenever the closure of T (P )

in the mean squared norm equals the set of all possible scores, the model P is locally

consistent with any parametric specification and hence we say P is locally just identified

by P. In contrast, whenever there exist scores that do not belong to the closure of

T (P ), the model P is locally inconsistent with some parametric specification and hence

we say P is locally overidentified by P. While these definitions can in principle be more

generally applied, we focus on models that are regular – in the sense that T (P ) is linear2

– due to the necessity of this condition in semiparametric efficiency analysis (van der

Vaart, 1989). When specialized to unconditional moment restriction models, local overi-

dentification is equivalent to the standard GMM overidentification requirement that the

number of moment restrictions exceed the number of parameters.

Due to its fundamental role in the limiting experiment, local overidentification is

intrinsically related to the local asymptotic behavior of both regular estimators and

specification tests. We show, for example, that the local power function of any speci-

fication test is also the power function of a test of whether the score of the underlying

deviation belongs to the closure of the tangent set T (P ). Since we define local just

identification as the closure of T (P ) equaling the set of all possible scores, it follows

that the local power of a specification test cannot exceed its local size whenever P is lo-

cally just identified by P – i.e. proper specification is locally untestable under local just

identification. Conversely, whenever P is locally overidentified by P there exist scores

that are uncorrelated with all the scores in T (P ), and we show how a specification test

whose local power exceeds its local size may be constructed by employing them. Hence,

in analogy to Sargan (1958) and Hansen (1982) we conclude that, subject to the avail-

ability of a set of scores orthogonal to T (P ), proper specification is locally testable if

1We thank Stephane Bonhomme for asking the question of whether the nonparametric instrumental
variables regression of Newey and Powell (2003) is overidentified.

2We stress that a model P being regular does not imply that all the parameters underlying the model
are regular (or root-n estimable, where n is the sample size). In fact, the underlying parameters of a
regular model P may themselves not be identified or not be root-n estimable.
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and only if P is locally overidentified by P. While the required set of orthogonal scores

is in principle unknown, we show how its estimation is implicitly done by the J-test

of Hansen (1982), and more generally devise a method for its estimation by following

Hausman (1978).

The connection between local overidentification and the local asymptotic behavior

of regular estimators can be readily established by exploiting results from the semi-

parametric efficiency literature (Bickel et al., 1993). For instance, Newey (1990) shows

asymptotically linear and regular estimators of a common Euclidean parameter must

share the same influence function whenever the closure of T (P ) equals the set of all

possible scores. Building on this result, we establish that asymptotically linear and reg-

ular estimators of any (possibly infinite dimensional) parameter must be asymptotically

equivalent whenever P is locally just identified by P. Conversely, we show that if P is

locally overidentified by P, then parameters that admit at least one asymptotically lin-

ear and regular estimator may in fact be estimated by multiple asymptotically distinct

estimators. Thus, alternative asymptotically linear and regular estimators of a common

parameter may only be asymptotically different if and only if P is locally overidentified.

It is worth emphasizing this conclusion pertains to any regular parameter and hence

applies to simple cases such as means or cumulative distribution functions, as well as to

more complex ones like average derivatives (whenever the parameter is regular).

We deduce from the described results that local overidentification is instrumental for

both the existence of locally nontrivial specification tests and the semiparametric effi-

ciency analysis of regular estimators. It follows that the equivalence between efficiency

and potential refutability of a model found in Hansen (1982) is not coincidental, but

rather the reflection of a deeper principle applicable to all regular models. In partic-

ular, these results enable us to immediately conclude that semiparametric conditional

moment restriction models are typically locally overidentified because they allow for

both inefficient and efficient estimators (Ai and Chen, 2003; Chen and Pouzo, 2009).

Thus, according to our specification testing results, a locally nontrivial specification test

of these models exists and may be constructed by comparing efficient and inefficient

estimators of a common parameter as in Hausman (1978).

In order to further illustrate the utility of our results, we characterize local overi-

dentification in nonparametric conditional moment restriction models (Chen and Pouzo,

2012). Heuristically, we establish that local overidentification in such models is equiva-

lent to the existence of a nonconstant transformation of the conditioning variable that is

uncorrelated with the span of the derivative of the conditional expectation with respect

to the nonparametric parameter. In the leading example of nonparametric instrumental

variables regression, local overidentification demands the existence of a non-constant

function of the instrument that is uncorrelated with all possible transformations of the

endogenous regressor – formally, the joint distribution of the instrument and endogenous
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regressor must not be complete with respect to the endogenous regressor. Hence, while

the nonparametric instrumental variables regression model may be locally overidenti-

fied, it follows that local overidentification cannot be determined by simply counting the

number of instruments as in Hansen (1982). Moreover, we further conclude from our

general results that regular plug-in functionals of a nonparametric instrumental variables

regression are not automatically efficient, while regular plug-in functionals of nonpara-

metric conditional means generally are.3 Analogously, two stage estimation approaches

in which the first stage parameter is identified by a conditional moment restriction may

be inefficient when P is locally overidentified by the first stage conditional moment

restriction model – a situation that may arise when the first stage parameter is semi-

parametric or a function of endogenous variables. Whenever P is locally just identified

by the first stage conditional moment restriction model, however, two stage estimation

can indeed be semiparametrically efficient; see Newey and Powell (1999) and Ackerberg

et al. (2014).

The remainder of the paper is organized as follows. Section 2 formally defines local

overidentification, while Sections 3 and 4 discuss the connections to testing and efficiency

respectively. Section 5 applies our results to characterize local overidentification in

nonparametric conditional moment restriction models and studies its implications. We

briefly conclude in Section 6. All proofs are contained in the Appendix.

2 Local Overidentification

In this section, we introduce basic notation and formally define local overidentification.

2.1 Basic Notation

Throughout, we assume the data consists of an i.i.d. sample {Xi}ni=1 with each obser-

vation Xi ∈ Rdx distributed according to P ∈ P. The set of probability measures P

represents the model under consideration and may be parametric, semiparametric, or

fully nonparametric depending on the maintained model assumptions.

Our analysis is local in nature and hence we need to introduce suitable perturbations

to the distribution P . Following the literature on limiting experiments (LeCam, 1986),

we consider arbitrary smooth parametric likelihoods, which we formally define by:

Definition 2.1. A “path” t 7→ Pt,g is a function defined on a neighborhood N ⊆ R of

3Our results in particular imply nonparametric conditional mean and conditional quantiles models
are locally just identified.
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Figure 1: Model P and Tangent Space at P

P

P

T̄ (P )

T̄ (P )⊥

zero such that Pt,g is a probability measure on Rdx for every t ∈ N , P0,g = P , and

lim
t→0

∫
[
1

t
(dP

1/2
t,g − dP 1/2)− 1

2
gdP 1/2]2 = 0 . (1)

The function g : Rdx → R is referred to as the “score” of the path t 7→ Pt,g.

Thus, a path t 7→ Pt,g is simply a parametric model that passes through P and is

smooth in the sense of satisfying (1) or, equivalently, of being differentiable in quadratic

mean.4 In our asymptotic analysis, the only relevant characteristic of a path t 7→ Pt,g is

its score g, which is why we emphasize its importance through the notation. It is evident

from Definition 2.1 that any score g must have mean zero and be square integrable with

respect to P . In other words, all scores must belong to the space L2
0 given by

L2
0 ≡ {g :

∫
gdP = 0 and ‖g‖L2 <∞} ‖g‖2L2 ≡

∫
g2dP . (2)

The implication that g ∈ L2
0, however, is solely the result of Pt,g being restricted to be a

probability measure for all t in a neighborhood of zero. If we in addition demand that

Pt,g belong to the model P, then the set of feasible scores reduces to

T (P ) ≡ {g ∈ L2
0 : (1) holds for some t 7→ Pt,g ∈ P} , (3)

which is often referred to as the tangent set at P . Its closure in L2
0 under the norm

‖ · ‖L2 is in turn termed the tangent space and denoted by T̄ (P ).

4The integral should be understood as
∫

[ 1
t
((
dPt,g
dµt

)1/2 − ( dP
dµt

)1/2)− 1
2
g( dP
dµt

)1/2]2dµt where µt is any
σ-finite positive measure dominating (Pt+P ). The choice of µt does not affect the value of the integral.
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Whenever T̄ (P ) is a vector subspace, it is useful to define its orthogonal complement

T̄ (P )⊥ ≡ {g ∈ L2
0 :

∫
gfdP = 0 for all f ∈ T̄ (P )} . (4)

Together, the tangent space T̄ (P ) and its complement T̄ (P )⊥ form a decomposition of

the space of all possible scores L2
0. Formally, every g ∈ L2

0 satisfies the equality

g = ΠT (g) + ΠT⊥(g) , (5)

where ΠT (g) and ΠT⊥(g) denote the metric projections under ‖ · ‖L2 onto T̄ (P ) and

T̄ (P )⊥ respectively. Intuitively, ΠT (g) corresponds to the component of a score g that

is in accord with the model P, while ΠT⊥(g) represents the component orthogonal to

P; see Bickel et al. (1993). Figure 1 illustrates this standard construction.

As a final piece of notation, for an arbitrary set A we define the space `∞(A) by

`∞(A) ≡ {f : A→ R s.t. sup
a∈A
|f(a)| <∞} , (6)

which is endowed with the norm ‖f‖∞ ≡ supa∈A |f(a)| – i.e. `∞(A) is simply the set of

bounded functions defined on A. In particular, setting [d] ≡ {1, . . . , d} for any integer

d, it follows that `∞([d]) denotes the set of bounded sequences with d elements.

2.2 Main Definition

We formalize our discussion so far by imposing the following Assumption:

Assumption 2.1. (i) {Xi}ni=1 is an i.i.d. sequence with Xi ∈ Rdx distributed according

to P ∈ P; (ii) T (P ) is linear – i.e. if g, f ∈ T (P ), a, b ∈ R, then ag + bf ∈ T (P ).

While the i.i.d. requirement in Assumption 2.1(i) is not strictly necessary, we im-

pose it in order to streamline exposition. An extension of our results to certain non i.i.d.

models can be accomplished by generalizing our setting to Gaussian shift experiments;

see van der Vaart and Wellner (1989). In turn, Assumption 2.1(ii) requires the model

P to be regular at P in the sense that its tangent set T (P ) be linear. This requirement

is satisfied by numerous models in econometrics, and it is either implicitly or explicitly

imposed whenever semiparametric efficient estimators are justified through the convo-

lution theorem (van der Vaart, 1989). Nonetheless, Assumption 2.1(ii) does rule out

certain partially identified settings such as missing data problems (Manski, 2003), mix-

ture models (van der Vaart, 1989), and instances in which a parameter is on a boundary

(Andrews, 1999). In the latter three cases, the tangent set T (P ) is often not linear but

a convex cone instead – a setting that enables a partial extension of our results concern-

ing the local testability of the model; see Remark 3.2. However, since linearity of T (P )
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plays an essential role in the theory of semiparametric efficiency, our results concerning

estimation are not directly generalizable to nonlinear tangent sets.

Given the introduced notation, we next formally define local overidentification.

Definition 2.2. If L2
0 = T̄ (P ), then we say P is locally just identified by the model P.

Conversely, if T̄ (P )  L2
0, then we say P is locally overidentified by the model P.

Intuitively, P is locally overidentified by a model P if P yields meaningful restrictions

on the scores that can be generated by parametric submodels. Conversely, P is locally

just identified by the model P when the sole imposed restriction is that the scores have

mean zero and a finite second moment – a quality common to the scores of all paths

regardless of whether they belong to the model P or not. Definition 2.2 is inherently

local in that it concerns only the “shape” of P at the point P rather than P in its

entirety as would be appropriate for a global notion of overidentification (Koopmans and

Riersol, 1950); see Remark 2.1. It is also worth emphasizing that local overidentification

concerns solely a relationship between the distribution P and the model P. As a result, it

is possible for P to be locally overidentified despite underlying parameters of the model

being partially identified – an observation that simply reflects the fact that partially

identified models may still be refuted by the data (Manski, 2003; Arellano et al., 2012).

Remark 2.1. Koopmans and Riersol (1950) refer to a model P as being overidentified

whenever there exists the possibility that P does not belong to P. This criterion leads

to a global definition of overidentification, whereby P is deemed overidentified if it is a

strict subset of the set of all probability measures (on Rdx). Regrettably, as emphasized

by Koopmans and Riersol (1950), this global definition is too general to have strong

implications on statistical analysis; see for instance Romano (2004) for examples of

models P that are both overidentified and untestable. In contrast, despite also being

a population concept, local overidentification is able to provide a stronger connection

to the testability of P and the performance of regular estimators albeit at the cost of

conducting a local rather than global analysis.

In what follows, we demonstrate the utility of the proposed definition by study-

ing the fundamental role local overidentification plays in both specification testing and

semiparametric efficiency analysis. Before proceeding, however, we first illustrate the

introduced concepts in the generalized methods of moments framework. We will repeat-

edly return to this application in order to obtain further intuition for our results.

GMM Illustration. Let Θ ⊆ Rdβ denote the parameter space and ρ : Rdx ×Rdβ →
Rdρ be a known moment function with dβ ≤ dρ. The model P then consists of the set

P ≡ {P :

∫
ρ(·, β)dP = 0 for some β ∈ Θ} ; (7)
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i.e. the maintained assumption is that there exists a β that zeroes the moment condi-

tions. Let β(P ) solve
∫
ρ(·, β(P ))dP = 0 when P ∈ P. Assuming ρ is differentiable in β

for simplicity, define Γ(P ) ≡
∫
∇βρ(·, β(P ))dP , Ω(P ) ≡

∫
ρ(·, β(P ))ρ(·, β(P ))′dP , and

S(P ) ≡ [Idρ − Γ(P )(Γ(P )′Ω(P )−1Γ(P ))−1Γ(P )′Ω(P )−1] , (8)

where Idρ denotes a dρ × dρ identity matrix, and both Γ(P ) and Ω(P ) are assumed to

have full rank. By direct calculation it is then possible to show that

T̄ (P )⊥ = {g ∈ L2
0 : g = λ′S(P )ρ(·, β(P )) for some λ ∈ Rdρ}

T̄ (P ) = {g ∈ L2
0 :

∫
gfdP = 0 for all f ∈ T̄ (P )⊥} . (9)

Thus, P is locally overidentified by the model P if and only if T̄ (P )⊥ 6= {0}, or equiva-

lently if and only if S(P ) 6= 0 which yields the usual condition dρ > dβ.

3 Testing

Under appropriate regularity conditions, the requirement that the number of moments

exceed the number of parameters can be shown to be equivalent to the existence of locally

nontrivial specification tests in models defined by unconditional moment restrictions. In

this section, we show that in regular models an analogous relationship exists between

the local overidentification of P and the local testability of the model P.

3.1 Testing Setup

A specification test for a model P is a test of the null hypothesis that P belongs to P

against the alternative that it does not – i.e. it is a test of the hypotheses

H0 : P ∈ P H1 : P /∈ P . (10)

We denote an arbitrary (possibly randomized) test of (10) by φn : {Xi}ni=1 → [0, 1],

which recall is a function specifying for each realization of the data {Xi}ni=1 a corre-

sponding probability of rejecting the null hypothesis.5 Our interest is in examining the

local behavior of such tests along local perturbations to a distribution P ∈ P. More

precisely, we aim to characterize the limiting local power functions of tests φn when at

sample size n each Xi is distributed according to P1/
√
n,g for some path t 7→ Pt,g. To

this end, however, it is necessary to restrict attention to tests φn whose limiting local

power is well defined. Therefore, for any path t 7→ Pt,g we set Pn
1/
√
n,g
≡
⊗n

i=1 P1/
√
n,g

5A non-randomized test is therefore one where φn only takes values 1 (reject) or 0 (fail to reject).
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and define the limiting local power function π of a test φn to be given by

lim
n→∞

∫
φndP

n
1/
√
n,g ≡ π(g) , (11)

where in (11) we have implicitly assumed that φn is such that the limit indeed exists

for any path t 7→ Pt,g. The existence of a limiting local power function π is a mild

requirement which can be easily verified, for example, when tests are based on comparing

statistics to critical values; see Remark 3.1. It is also worth noting that, as emphasized

in the notation, any limiting power function π must only depend on the score g and be

independent of any other characteristics of the path t 7→ Pt,g.
6

Remark 3.1. Tests φn are often constructed by comparing a statistic Tn to an estimate

ĉ1−α of the 1− α quantile of its asymptotic distribution. Such tests are of the form

φn({Xi}ni=1) = 1{Tn > ĉ1−α} , (12)

and can be shown to satisfy (11) provided (i) (Tn,
1√
n

∑
i g(Xi)) converges in distribution

under Pn for any g ∈ L2
0, and (ii) the limiting distribution of Tn is continuous.

3.2 Limiting Experiment

Intuitively, the limiting local power function π of a level α test φn of (10) that can

control size locally to P ∈ P must not exceed α along submodels t 7→ Pt,g ∈ P (see

(11)). Since by definition the score g of any submodel t 7→ Pt,g ∈ P belongs to the

tangent set T (P ), local size control is therefore tantamount to the requirement that

π(g) ≤ α for all g ∈ T (P ) (13)

or, equivalently, that π(g) ≤ α whenever ΠT⊥(g) = 0. In contrast, a path t 7→ Pt,g that

approaches P ∈ P from outside the model P should be such that its score g does not

belong to T (P ) or, equivalently, we should expect ΠT⊥(g) 6= 0 – see Figure 2. In short,

these heuristics suggest π may be viewed as the power function of a level α test for

H0 : ΠT⊥(g) = 0 H1 : ΠT⊥(g) 6= 0 . (14)

In this section, we formalize this discussion by establishing that the limiting local power

function π of any test φn of (10) is also the power function of a test of (14).

The key step necessary to relate π to the hypothesis testing problem in (14) is to

embed the latter in a concrete statistical experiment. To this end, let dT ≡ dim{T̄ (P )}
6This follows from the fact that the product measures of any two local paths that share the same

score must converge in the Total Variation metric; see Lemma B.1 in the Appendix.
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Figure 2: The Score of a Path outside P

P

P

Pt,g g

ΠT⊥ (g)

ΠT (g)

and dT⊥ ≡ dim{T̄ (P )⊥} denote the dimensions of the tangent space T̄ (P ) and its

orthogonal complement T̄ (P )⊥, and note that dT and dT⊥ may be infinite. Under

Assumption 2.1(ii) both T̄ (P ) and T̄ (P )⊥ are Hilbert spaces and there therefore exist

orthonormal bases {ψTk }
dT
k=1 and {ψ⊥k }

d
T⊥
k=1 for T̄ (P ) and T̄ (P )⊥ respectively. For each

g ∈ L2
0 we then define a probability measure Qg on RdT ×Rd

T⊥ to be equal to the law

of (Y, Z) ∈ RdT ×Rd
T⊥ where Y ≡ (Y1, . . . , YdT )′ and Z ≡ (Z1, . . . , Zd

T⊥
)′ are such that

all {Yk}dTk=1 and {Zk}
d
T⊥
k=1 are mutually independent and distributed according to

Yk ∼ N(

∫
gψTk dP, 1) for 1 ≤ k ≤ dT

Zk ∼ N(

∫
gψ⊥k dP, 1) for 1 ≤ k ≤ dT⊥ ; (15)

i.e. Y and Z are possibly infinite dimensional vectors with independent coordinates that

are normally distributed with unknown means depending on g and known unit variance.

The local behavior of specification tests can then be understood through the related

problem of testing (14) based on a single observation (Y,Z) whose distribution is known

to belong to the family {Qg : g ∈ L2
0}. Formally, Theorem 3.1 establishes that if π is

the limiting local power function of a level α test φn of (10), then there exists a level α

test φ of (14) based on a single observation (Y,Z) whose power function is also π.

Theorem 3.1. Let Assumption 2.1 hold and suppose that φn satisfies (11) and

lim
n→∞

∫
φndP

n
1/
√
n,g ≤ α (16)

for any submodel t 7→ Pt,g ∈ P. Then there is a level α test φ : (Y,Z) → [0, 1] of the
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hypothesis in (14) based on a single observation (Y, Z) such that for any path t 7→ Pt,g

π(g) ≡ lim
n→∞

∫
φndP

n
1/
√
n,g =

∫
φdQg . (17)

The principal utility of Theorem 3.1 is that it enables us to understand the local

asymptotic behavior of specification tests by studying the simpler testing problem in

(14). For instance, if optimality results are available for the testing problem in (14), then

these can be combined with Theorem 3.1 to obtain local power bounds for specification

tests. To this end, it is convenient to note that since {ψ⊥k }
d
T⊥
k=1 is an orthonormal basis for

T̄ (P )⊥, the null hypothesis that ΠT⊥(g) = 0 is equivalent to Z having mean zero under

Qg. Corollary 3.1 illustrates these points, by employing Theorem 3.1 and maximin

power bounds for tests on the mean of Z to obtain maximin local power bounds for

specification tests when T̄ (P )⊥ is finite dimensional.

Corollary 3.1. Let X 2(B) follow a noncentral chi-squared distribution with dT⊥ degrees

of freedom and noncentrality parameter B, and let χ2
1−α denote the 1 − α quantile of

X 2(0). If Assumption 2.1 holds, φn satisfies (11) and (16), and dT⊥ <∞, then

lim sup
n→∞

inf
{g∈L2

0:‖Π
T⊥ (g)‖L2≥B}

∫
φndP

n
1/
√
n,g ≤ P (X 2(B) ≥ χ2

1−α) . (18)

Intuitively, Corollary 3.1 establishes an upper bound on the minimum local power a

test may have along paths t 7→ Pt,g which are in a local sense a distance B away from

the model P.7 Thus, if a specification test is shown to attain the bound in (18), then its

local power function is maximin. We next return to the generalized methods of moment

model to illustrate our results and conclude the J-test is in fact locally maximin.

GMM Illustration (cont). For Ω̂(P )−1 a consistent estimator for Ω(P )−1, it is cus-

tomary in GMM to conduct a specification test by comparing the J-statistic

Jn ≡ inf
β∈Θ

(
√
n

∫
ρ(·, β)dPn)′Ω̂(P )−1(

√
n

∫
ρ(·, β)dPn) (19)

to the 1 − α quantile of a chi-squared distribution with (dρ − dβ) degrees of freedom

(denoted χ2
1−α). Under standard regularity conditions, the limiting local power function

of this specification test exists and for any score g ∈ L2
0 it is equal to

π(g) = P (‖Ω(P )−
1
2S(P )(G0 +

∫
ρ(·, β(P ))gdP )‖2 ≥ χ2

1−α) , (20)

where G0 ∼ N(0,Ω(P )) and S(P ) is as defined in (8). Moreover, it can be shown

by direct calculation that S(P )′Ω(P )−1S(P ) = Ω(P )−
1
2M(P )Ω(P )−

1
2 for a symmetric

7This follows by noting ‖ΠT⊥(g)‖L2 = inff∈T (P ) ‖g − f‖L2 and interpreting local distance between
different paths t 7→ Pt,g as the ‖ · ‖L2 distance of their respective scores.
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idempotent matrix M(P ) of rank dρ− dβ. Thus, letting {γk}
dρ−dβ
k=1 denote the eigenvec-

tors of M(P ) corresponding to nonzero eigenvalues, it then follows from (20) that

‖Ω(P )−
1
2S(P )(G0 +

∫
ρ(·, β(P ))gdP )‖2

=

dρ−dβ∑
k=1

(γ′kΩ(P )−
1
2G0 +

∫
(γ′kΩ(P )−

1
2 ρ(·, β(P )))gdP )2 . (21)

However, {γ′kΩ(P )−
1
2 ρ(·, β(P ))}dρ−dβk=1 forms an orthonormal basis for T̄ (P )⊥ (see (9))

while {γ′kΩ(P )−
1
2G0}

dρ−dβ
k=1 are independent standard normal random variables. From

(20) and (21) we therefore obtain for Z ∈ Rdρ−dβ distributed according to (15) that

π(g) = P (‖Z‖2 ≥ χ2
1−α) . (22)

Hence, in accord to Theorem 3.1, the local power function of a J-test has a dual interpre-

tation as the power function of a Wald test for whether Z has mean zero. In particular,

it immediately follows that the J-test attains the optimality bound of Corollary 3.1.

Similarly, it is possible to employ Theorem 3.1 to conclude the J-test is optimal among

specification tests whose local power functions is invariant in ‖ΠT⊥(g)‖L2 .

3.3 Specification Testing

Having characterized the limiting experiment in Theorem 3.1, we can now develop the

connection between local overidentification and the local behavior of specification tests.

A first immediate conclusion of our analysis is that proper model specification is locally

untestable whenever P is locally just identified by the model P.

Corollary 3.2. Let Assumption 2.1 hold and suppose φn satisfies (11) and (16). If P

is locally just identified by the model P, then for any path t 7→ Pt,g it follows that

lim
n→∞

∫
φndP

n
1/
√
n,g ≤ α . (23)

Corollary 3.2 establishes that if P is locally just identified, then the local power

of a specification test that can locally control size (as in (16)) cannot exceed its level.

Intuitively, whenever P is locally just identified by P, the set of scores T (P ) which

correspond to paths t 7→ Pt,g ∈ P is dense in the set of all possible scores and as a

result every path is locally on the “boundary” of the null hypothesis; see also Romano

(2004) for a nonlocal analogue. The result is straightforward to derive from Theorem

3.1 by noting that under local just identification T̄ (P ) = L2
0 and T̄ (P )⊥ = {0}, which

implies ΠT⊥(g) = 0 for all possible scores g ∈ L2
0. Therefore, the null hypothesis in (14)

is satisfied for all paths t 7→ Pt,g regardless of whether they belong to P or not, and thus

13



by Theorem 3.1 the limiting local power of a test φn cannot exceed α.

In order to complete the analogy to the generalized methods of moments setting, it

remains to be shown that the converse to Corollary 3.2 also holds – namely, that if P is

locally overidentified, then there exists a specification test with nontrivial local power.

We will establish the desired converse under the following high level assumption:

Assumption 3.1. There is a known F ≡ {fk}dFk=1 ⊆ T̄ (P )⊥ with
∑dF

k=1

∫
f2
kdP <∞.

Assumption 3.1 is untenable because the availability of a subset F of the orthogonal

complement T̄ (P )⊥ in principle requires knowledge of the tangent set T (P ) and thus of P

itself. Nonetheless, under model specific regularity conditions, suitable estimators F̂ for

appropriate subsets F of T̄ (P )⊥ are often available; see the discussion of Hansen (1982)

below and of Hausman (1978) in Section 4.3. At present, we therefore abstract from

the construction of such estimators F̂ and directly impose Assumption 3.1 so as to ease

exposition of the connection between specification testing and local overidentification.

We also note that in Assumption 3.1 the dimension of F may be infinite (dF =∞). In

this case the condition
∑dF

k=1

∫
f2
kdP < ∞ implicitly requires the variance of fk(Xi) to

decrease to zero sufficiently fast with k.

Given the presumed availability of the set F , we may define the vector of means

Gn ≡ (
1√
n

n∑
i=1

f1(Xi), . . . ,
1√
n

n∑
i=1

fdF (Xi))
′ (24)

which belong to RdF and is potentially infinite dimensional (dF = ∞). Assumption

3.1, however, ensures that even when dF is infinite the vector Gn belongs to the space

`∞([dF ]) Pn-almost-surely, where recall [dF ] ≡ {1, . . . , dF } and `∞([dF ]) denotes the set

of bounded functions on [dF ].8 Moreover, since each f ∈ F is such that E[f(Xi)] =

0 when Xi is distributed according to P , the vector Gn is properly centered and it

can therefore be expected to converge to a centered Gaussian measure under Pn. In

contrast, if {Xi}ni=1 is distributed according to Pn
1/
√
n,g

for a path t 7→ Pt,g approaching

P from outside P, then Gn should not be properly centered and instead converge to a

non-centered Gaussian measure. The following Lemma formalizes these heuristics and

provides the foundation for a specification test with nontrivial local power.

Lemma 3.1. Let Assumptions 2.1, 3.1 hold, for any path t 7→ Pt,g let Ln,g denote the

law of {Xi}ni=1 under
⊗n

i=1 P1/
√
n,g, and define ∆g ≡ {

∫
fkgdP}dFk=1. Then, there is a

tight centered Gaussian process G0 ∈ `∞([dF ]) such that for any path t 7→ Pt,g:

Gn
Ln,g→ G0 + ∆g . (25)

8The space `∞([dF ]) may be identified with RdF when dF <∞ and with `∞(N) (the space of bounded
sequences) when dF =∞.
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Moreover, (i) ∆g = 0 (in `∞([dF ])) whenever t 7→ Pt,g ∈ P, and (ii) If in addition

cl{lin{F}} = T̄ (P )⊥, then it also follows that ∆g 6= 0 (in `∞([dF ])) whenever

lim inf
n→∞

inf
Q∈P

n

∫
[dQ1/2 − dP 1/2

1/
√
n,g

]2 > 0 . (26)

Lemma 3.1 corroborates the presence of a shift ∆g ≡ {
∫
fkgdP}dFk=1 in the asymptotic

distribution of Gn whenever {Xi}ni=1 is distributed according to Pn
1/
√
n,g

in place of Pn.

The explicit formulation of ∆g as a vector of covariances between the functions f ∈ F
and the score g of the path t 7→ Pt,g is particularly important for testing purposes. On

the one hand, if the path t 7→ Pt,g approaches P from within the model P, then g ∈ T (P )

by definition and thus ∆g = 0 as a result of F ⊂ T̄ (P )⊥. On the other hand, if a path

t 7→ Pt,g does not approach P “too fast” from outside P (see (26)) and F is sufficiently

rich in the sense that the closure of its linear span (cl{lin{F}}) equals T̄ (P )⊥, then

g must be correlated with some f ∈ F implying ∆g 6= 0. Intuitively, the vector of

sample moments Gn can therefore be employed to detect whether a local perturbation

approaches P from within the model P or from outside of it.

By equating the null hypothesis in (14) to Gn having mean zero, Lemma 3.1 sug-

gests a specification test with nontrivial asymptotic local power may be built by testing

whether Gn has mean zero. Following this intuition, we construct a locally nontrivial

specification test by utilizing a function Ψ : `∞([dF ])→ R+ to reduce the vector of sam-

ple means Gn to a scalar test statistic Ψ(Gn) – for instance, we may set Ψ(Gn) = ‖Gn‖∞
when dF =∞. In general, we require the function Ψ to satisfy the following condition:

Assumption 3.2. (i) Ψ : `∞([dF ])→ R+ is continuous, convex; (ii) Ψ(0) = 0, Ψ(b) =

Ψ(−b) for all b ∈ `∞([dF ]); (iii) {b ∈ `∞([dF ]) : Ψ(b) ≤ t} is bounded for all t > 0.

Given Assumption 3.2, the following Theorem shows that a specification test based

on rejecting whenever the statistic Ψ(Gn) is large indeed has nontrivial local power.

Theorem 3.2. Let Assumptions 2.1, 3.1, 3.2 hold, and for α ∈ (0, 1) let c1−α denote

the 1− α quantile of Ψ(G0). If c1−α > 0, then for any path t 7→ Pt,g ∈ P it follows that

lim
n→∞

Pn1/
√
n,g(Ψ(Gn) > c1−α) = α . (27)

Moreover, if in addition cl{lin{F}} = T̄ (P )⊥ and a path t 7→ Pt,g satisfies (26), then

lim inf
n→∞

Pn1/
√
n,g(Ψ(Gn) > c1−α) ≥ P (Ψ(G0 + ∆g) > c1−α) > α . (28)

It follows from Lemma 3.1 that the asymptotic distribution of Ψ(Gn) equals Ψ(G0)

whenever {Xi}ni=1 is distributed according to Pn
1/
√
n,g

for any path t 7→ Pt,g ∈ P. There-

fore, letting c1−α denote the 1−α quantile of Ψ(G0), it is straightforward to establish the

15



first claim of Theorem 3.2 that a test that rejects whenever Ψ(Gn) is larger than c1−α

locally controls size (see (27)). Establishing that such a test also has nontrivial local

power (see (28)) is substantially more challenging and follows from a strengthening of

Anderson’s inequality due to Lewandowski et al. (1995). Finally, we note that while lin-

earity of T (P ) plays a crucial in the study of regular estimators (van der Vaart, 1989),

the present section’s results concerning local testability of P can in fact be partially

extended to settings in which T (P ) is not linear; see Remark 3.2.

Remark 3.2. In an important class of irregular models, T̄ (P ) is not a vector space but

a convex cone instead. In such a setting it is convenient to define the polar cone

T̄ (P )− ≡ {f ∈ L2
0 :

∫
fgdP ≤ 0 for all g ∈ T̄ (P )} , (29)

which equals T̄ (P )⊥ when T̄ (P ) is a vector space. Employing Moreau’s decomposition

(Moreau, 1962) it is then possible to generalize Lemma 3.1 provided the condition F ⊂
T̄ (P )⊥ is replaced by F ⊂ T̄ (P )−. In particular, result (25) continues to hold, but with

∆g ≤ 0 whenever t 7→ Pt,g ∈ P, and ∆g � 0 whenever the path t 7→ Pt,g satisfies (26)

and the convex cone generated by F in L2
0 equals T̄ (P )−. This extension of Lemma

3.1 suggests an analogue to Theorem 3.2 can be established by employing test statistics

Ψ(Gn) of the null hypothesis that the mean Gn is negative (instead of zero). However,

while given the availability of a suitable class F it is straightforward to construct a test

that locally controls size (as in (27)), the resulting test will have power greater than size

against some but not all local alternatives (as in (28)). The latter weaker result is due

to the nonexistence of nontrivial unbiased tests in these problems (Lehmann, 1952).

Together, Corollary 3.2 and Theorem 3.2 complete the analogy to the generalized

method of moments setting. Namely, they imply that there exists a locally nontrivial

specification test if and only if P is locally overidentified by the model P. The spec-

ification test in Theorem 3.2 is infeasible insofar as it requires knowledge of a set of

functions F satisfying Assumption 3.1 and whose linear span is dense in the orthogonal

complement T̄ (P )⊥. These requirement can be dispensed with under additional regu-

larity conditions, as we next illustrate by showing that the J-test of Hansen (1982) is

in fact asymptotically equivalent to the test developed in Theorem 3.2.

GMM Illustration (cont). For the J-statistic Jn and the matrix S(P ) as defined in

(19) and (8) respectively, it is straightforward to show that

Jn = ‖
√
n

∫
Ω(P )−

1
2S(P )ρ(·, β(P ))dPn‖2 + op(1) . (30)

Hence, for ek ∈ Rdρ a vector whose kth coordinate is one and all other coordinates are
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zero, and the set F ≡ {e′kΩ(P )−
1
2S(P )ρ(·, β(P ))}dρk=1, we obtain from (30) that

Jn = Ψ(Gn) + op(1) , (31)

where Ψ(b) = ‖b‖2 for any b ∈ `∞([dρ]). Moreover, by (9) we can also conclude that

F ⊂ T̄ (P )⊥ and cl{lin{F}} = T̄ (P )⊥. Thus, the J-test is asymptotically equivalent

to a version of the infeasible test developed in Theorem 3.2. Intuitively, Jn may be

interpreted as employing an estimate F̂ of the unknown class F instead of F itself.

4 Estimation

In Section 3 we argued that local overidentification plays a fundamental role in determin-

ing whether a model is locally testable. In what follows, we show that local overidentifi-

cation is also essential in determining whether regular parameters admit asymptotically

distinct linear and regular estimators. We therefore conclude that, subject to regular-

ity conditions, local overidentification is equivalent to both the local testability of the

model and the existence of efficient (and inefficient) estimators. Hence, in accord with

Hansen (1982), our results imply semiparametric efficiency considerations are only of

importance when the model is locally testable.

4.1 Estimation Setup

We represent a parameter as the value a known mapping θ : P→ B takes at the unknown

distribution P ∈ P. In the construction of Hausman tests, it will be particularly useful

to allow for θ(P ) to be infinite dimensional and we therefore only require B to be a

Banach space with norm ‖ · ‖B. The dual space of B is denoted by B∗ and defined as

B∗ ≡ {b∗ : B→ R : b∗ is linear and ‖b∗‖B∗ <∞} ‖b∗‖B∗ ≡ sup
‖b‖B≤1

|b∗(b)|; (32)

i.e. the dual space B∗ is the set of continuous linear functionals operating on B.

An estimator θ̂n : {Xi}ni=1 → B for the parameter θ(P ) is then simply a function

mapping the data into the space B where θ(P ) belongs. It is evident that given a

consistent estimator θ̂n of θ(P ) it is always possible to construct an alternative consistent

estimator – for instance, by considering θ̂n + b/
√
n for any b ∈ B. Addressing the

question of whether θ(P ) admits a “unique” estimator therefore requires us to in some

manner constrain the class of estimators under consideration. We accomplish this goal

by focusing attention on estimators that are both regular and asymptotically linear. In

the present setting, regularity and asymptotic linearity are defined as follows:
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Definition 4.1. θ̂n : {Xi}ni=1 → B is a regular estimator of θ(P ) if there is a tight Z
such that

√
n{θ̂n − θ(P1/

√
n,g)}

Ln,g→ Z for any t 7→ Pt,g ∈ P and Ln,g ≡
⊗n

i=1 P1/
√
n,g.

Definition 4.2. θ̂n : {Xi}ni=1 → B is an asymptotically linear estimator of θ(P ) if

√
n{θ̂n − θ(P )} =

1√
n

n∑
i=1

ν(Xi) + op(1) (33)

under Pn ≡
⊗n

i=1 P for some ν : Rdx → B satisfying b∗(ν) ∈ L2
0 for any b∗ ∈ B∗.

By restricting attention to regular estimators, as in Definition 4.1, we focus on
√
n-

consistent estimators whose asymptotic distribution is invariant to local perturbations of

the data generating process. We note that the perturbations we consider are only under

paths within the model P since the parameter θ(P1/
√
n,g) may not be defined when

P1/
√
n,g /∈ P; see the GMM discussion below. Asymptotic linearity, as in Definition

4.2, in turn imposes the existence of an influence function ν for which (33) holds in B.

The condition that b∗(ν) ∈ L2
0 for any element b∗ ∈ B∗ implies

√
n{b∗(θ̂n) − b∗(θ(P ))}

converges to a centered normal distribution on R under Pn. Thus, any estimator θ̂n

satisfying (33) that converges in distribution in B must do so to a centered Gaussian

measure. In particular, we note that this requirement implies that if θ̂n is asymptotically

linear and regular, then θ̂n + b/
√
n for 0 6= b ∈ B cannot be.

We illustrate these concepts in the generalized methods of moments context.

GMM Illustration (cont). The canonical example for a parameter θ(P ) in this setting

is β(P ) – i.e. the element β ∈ Θ solving
∫
ρ(·, β(P ))dP = 0. In this case B = Rdβ

and θ(P ) = β(P ) is clearly defined for all P ∈ P but not for P /∈ P. The generalized

methods of moments estimator of Hansen (1982) is then both regular and asymptotically

linear under standard conditions. For an example of an infinite dimensional parameter,

we may let B = `∞(Rdx) and consider estimating the c.d.f. of P so that

θ(P ) ≡ t 7→ P (Xi ≤ t) . (34)

Regular and asymptotically linear estimators for this parameter include the empirical

c.d.f. and the empirical likelihood estimator studied in Yuan et al. (2014).

4.2 Multiplicity of Estimators

Given the introduced notation, we next examine the relationship between local overi-

dentification of P and estimation of a parameter θ(P ) that admits at least one asymp-

totically linear regular estimator. To formalize our discussion, we first impose:

Assumption 4.1. (i) θ : P→ B is a known map, and B a Banach space B with norm

‖·‖B; (ii) There is an asymptotically linear regular estimator θ̂n : {Xi}ni=1 → B of θ(P ).

18



Figure 3: The Projection of Influence Functions
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While most commonly employed estimators are regular and asymptotically linear,

it is worth noting that their existence imposes restrictions on the map θ : P → B. In

particular, as shown by van der Vaart (1991b), the existence of an estimator θ̂n satisfy-

ing Assumption 4.1(ii) and the linearity of T (P ) imposed in Assumption 2.1(ii) together

imply that the map θ : P→ B must be pathwise differentiable relative to T (P ). We em-

phasize, however, that the existence of a parameter θ(P ) and an estimator θ̂n satisfying

Assumption 4.1 imposes restrictions only on the map θ : P→ B but not directly on the

model P. Moreover, we also note that our results apply to any parameter θ(P ) for which

Assumption 4.1 holds. Thus, θ(P ) should not be solely thought of as an intrinsic char-

acteristic of the model P, but rather as any “smooth” function of P ∈ P. In particular,

we emphasize that under Assumption 2.1 one can always find a map θ : P→ B and an

estimator θ̂n for which Assumption 4.1 holds9 – a point that is particularly useful in the

construction of Hausman tests and the analysis of nonparametric conditional moment

restriction models; see Sections 4.3 and 5.2 respectively.

Under Assumption 4.1, the following theorem establishes the connection between es-

timation and local overidentification by showing asymptotically linear regular estimators

are up to first order unique if and only if P is locally just identified by P.

Theorem 4.1. Let Assumptions 2.1 and 4.1 hold. It then follows that:

(i) If P is locally just identified by the model P and θ̃n : {Xi}ni=1 → B is an asymp-

totically linear regular estimator of θ(P ), then
√
n{θ̂n − θ̃n} = op(1) in B.

9For example, the parameter θ(P ) =
∫
fdP for a bounded function f always admits the sample mean

1
n

∑
i f(Xi) as an asymptotically linear and regular estimator
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(ii) If P is locally overidentified by the model P, then there exists an asymptotically

linear regular estimator θ̃n : {Xi}ni=1 → B such that
√
n{θ̂n − θ̃n}

L→ ∆ 6= 0 in B.

The heuristics behind Theorem 4.1 can most easily be understood in the special case

where θ(P ) is scalar valued. When B = R the influence functions ν and ν̃ of alternative

asymptotically linear regular estimators θ̂n and θ̃n are both elements of L2
0. As such,

both ν and ν̃ may be projected onto the tangent space T̄ (P ) and, crucially, by regularity

their projections must agree; see Figure 3.10 Theorem 4.1(i) immediately follows from

this observation for if P is locally just identified, then T̄ (P ) = L2
0 and thus the influence

functions of θ̂n and θ̃n must in fact coincide implying the estimators are first order

equivalent.11 Analogously, if P is locally overidentified so that T̄ (P )  L2
0, then Theorem

4.1(ii) may be established by constructing a regular asymptotically linear estimator θ̃n

whose influence function differs from that of θ̂n on the orthogonal complement T̄ (P )⊥.

The generalization of these heuristics to an infinite dimensional Banach space B can in

turn be accomplished by employing the dual space B∗ and exploiting the asymptotic

tightness of θ̂n to reduce the analysis to the scalar case.

The proof of Theorem 4.1 is closely related to standard arguments found in the

semiparametric efficiency literature (Bickel et al., 1993). In particular, when θ(P ) is

scalar valued efficiency is also naturally studied through T̄ (P ) and the decomposition

ν = ΠT (ν) + ΠT⊥(ν) , (35)

where ΠT (ν) may be understood as the efficient component and ΠT⊥(ν) as a “noise” fac-

tor extraneous to the model P. Whenever P is locally just identified all asymptotically

linear regular estimators lack a noise factor (ΠT⊥(ν) = 0) and are thus not only equiv-

alent but also efficient. Intuitively, efficiency gains are only possible when P is locally

overidentified and there thus exists model information to be exploited in estimation. In

contrast, whenever P is locally overidentified asymptotically linear regular estimators

may differ and be inefficient by possessing a “noise” component (ΠT⊥(ν) 6= 0) – the es-

timator θ̃n in Theorem 4.1 is in fact constructed precisely in this manner. This intrinsic

relationship between efficiency and local overidentification can be exploited to charac-

terize local overidentification in models P for which semiparametric efficiency results

are already available in the literature; see Remak 4.1.

Remark 4.1. Whenever P is locally just identified, Theorem 4.1(i) implies that for any

function f ∈ L2 ≡ {h : Rdx → R : ‖h‖L2 < ∞}, the mean parameter θf (P ) ≡
∫
fdP

10Formally, both ΠT (ν) and ΠT (ν̃) must equal the Riesz representor of the pathwise derivative θ̇ :
T̄ (P )→ R. See, e.g., Proposition 3.3.1 in Bickel et al. (1993) for a statement and proof.

11The fact that if T̄ (P ) = L2
0 then the influence functions must be unique had been previously noted

by Newey (1990) (p.106) for the case of B = R and Newey (1994) (Theorem 2.1) for the case of B = Rd

for a fixed finite d <∞.
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can be efficiently estimated by its sample analogue:

θ̂f,n ≡
1

n

n∑
i=1

f(Xi) . (36)

It is useful to note that the converse to this statement is also true. Namely, if θ̂f,n is

an efficient estimator of θf (P ) for all f ∈ L2, then P must be locally just identified.

In fact, for P to be locally just identified it suffices that θ̂f,n be efficient for all f ∈ D
for any dense subset D of L2.12 We will exploit this relationship in Section 5 to derive

necessary and sufficient conditions for P to be locally just identified in nonparametric

conditional moment restriction models.

In the context of GMM, Theorem 4.1 is easily illustrated through well known results.

GMM Illustration (cont). Let Ŵn be a sequence of dρ × dρ matrices converging in

probability under Pn to a positive definite matrix W , and define the estimator

β̂Wn ∈ arg min
β∈Θ

(
√
n

∫
ρ(·, β)dPn)′Ŵn(

√
n

∫
ρ(·, β)dPn) , (37)

which is both regular and asymptotically linear under standard conditions. Setting

θ(P ) ≡ β(P ) we then recover from Theorem 4.1(i) the well known result that the

asymptotic distribution of β̂Wn does not depend on W when P is just identified (dρ = dβ).

Theorem 4.1, however, further implies the conclusion is true for all parameters θ : P→ B

satisfying Assumption 4.1 – for example, for θ(P ) the c.d.f. of Xi as in (34).

4.3 Hausman Tests

Our results so far have established the equivalence of local overidentification and the

existence of both locally nontrivial specification tests and of asymptotically different es-

timators for a common regular parameter. The latter two concepts were also intrinsically

linked by the seminal work of Hausman (1978), who proposed conducting specification

tests through the comparison of alternative estimators of a common parameter. In what

follows, we revisit Hausman (1978) and show how the principles devised therein can be

employed to implement the infeasible specification test of Theorem 3.2.

The construction of a Hausman test requires the existence of two asymptotically

linear regular estimators θ̂n and θ̃n for a parameter θ(P ) ∈ B, and we therefore impose:

Assumption 4.2. (i) There are two asymptotically linear regular estimators θ̂n and θ̃n

of the parameter θ(P ) ∈ B with influence functions ν and ν̃ respectively; (ii) Under

Pn ≡
⊗n

i=1 P , (
√
n{θ̂n − θ(P )},

√
n{θ̃n − θ(P )}) converges in distribution on B×B.
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Figure 4: The Difference of Influence Functions

P

P

ν

ν̃

ν − ν̃

T̄ (P )

T̄ (P )⊥

The connection between a Hausman test and the results on specification testing from

Section 3.3 is most easily illustrated when the parameter θ(P ) is a scalar (B = R). In

such a setting, the influence functions ν and ν̃ of θ̂n and θ̃n both belong to L2
0 and

in addition their projections onto the tangent space T̄ (P ) coincide (ΠT (ν) = ΠT (ν̃));

recall Figure 3. The latter crucial property, however, is equivalent to the difference

of the influence functions (ν − ν̃) belonging to the orthogonal complement T̄ (P )⊥; see

Figure 4. Moreover, by asymptotic linearity of θ̂n and θ̃n it also follows that

√
n{θ̂n − θ̃n} =

1√
n

n∑
i=1

{ν(Xi)− ν̃(Xi)}+ op(1) (38)

under Pn, and hence
√
n{θ̂n− θ̃n} is asymptotically equivalent to the mean of a function

f ≡ (ν − ν̃) in the orthogonal complement T̄ (P )⊥ (compare to (24)). Intuitively, the

difference
√
n{θ̂n − θ̃n} therefore provides us with an estimator of the sample mean of

an element f ∈ T̄ (P )⊥, and a Hausman test can in turn be interpreted as a feasible

version of the test developed in Section 3.3.

The above discussion can be generalized to allow for nonscalar θ(P ) (B 6= R) by

employing the dual space B∗. In particular, note that for any b∗ ∈ B∗, b∗(θ(P )) is

a scalar valued parameter and b∗(θ̂n) and b∗(θ̃n) are both regular and asymptotically

linear estimators with influence functions b∗ ◦ ν and b∗ ◦ ν̃ respectively. Thus, by our

preceding discussion, (b∗ ◦ ν − b∗ ◦ ν̃) ∈ T̄ (P )⊥ and in addition

√
n{b∗(θ̂n)− b∗(θ̃n)} =

1√
n

n∑
i=1

{b∗(ν(Xi))− b∗(ν̃(Xi))}+ op(1) (39)

12See Lemma B.7 in the Appendix for a formal statement.
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under Pn. Heuristically, every b∗ ∈ B∗ may therefore be employed to estimate the

sample mean of the function b∗ ◦ (ν − ν̃) ∈ T̄ (P )⊥ through the difference
√
n{b∗(θ̂n) −

b∗(θ̃n)}. More generally, for any norm bounded subset U of B∗ we may collect all such

estimates implied by b∗ ∈ U into a stochastic process Ĝn ∈ `∞(U) defined by

Ĝn(b∗) ≡
√
n{b∗(θ̂n)− b∗(θ̃n)} . (40)

As the following Theorem shows, the stochastic process Ĝn ∈ `∞(U) is asymptotically

equivalent to the empirical process generated by G ≡ {b∗ ◦ (ν − ν̃) : b∗ ∈ U} and in this

manner mimics the role of the process Gn in Lemma 3.1.

Theorem 4.2. Let Assumptions 2.1, 4.1(i), and 4.2 hold, and U ⊂ B∗ be norm bounded.

For any path t 7→ Pt,g let Ln,g denote the law of {Xi}ni=1 under
⊗n

i=1 P1/
√
n,g, and define

∆g ∈ `∞(U) pointwise by ∆g(b
∗) ≡

∫
b∗ ◦ (ν− ν̃)gdP . Then, there exists a tight centered

Gaussian process G0 ∈ `∞(U) such that for any path t 7→ Pt,g we have

Ĝn
Ln,g→ G0 + ∆g . (41)

Moreover, b∗ ◦ (ν− ν̃) ∈ T̄ (P )⊥ for all b∗ ∈ U and hence (i) ∆g = 0 whenever t 7→ Pt,g ∈
P, and (ii) If in addition cl{lin{{b∗ ◦ (ν − ν̃)}b∗∈U}} = T̄ (P )⊥, then ∆g 6= 0 whenever

lim inf
n→∞

inf
Q∈P

n

∫
[dQ1/2 − dP 1/2

1/
√
n,g

]2 > 0 . (42)

In accord with Lemma 3.1, the asymptotic distribution of Ĝn exhibits a drift ∆g when

the data {Xi}ni=1 is distributed according to Pn
1/
√
n,g

in place of Pn. The functional form

of ∆g is one of covariances between the score g and the functions {b∗◦(ν−ν̃)}b∗∈U, which

as argued belong to T̄ (P )⊥. Hence, following the logic of Lemma 3.1, we again conclude

that ∆g = 0 if the path t 7→ Pt,g approaches P from within the model P. In contrast,

if the path t 7→ Pt,g does not approach P “too fast” (see (42)), then the drift ∆g will

be nonzero provided the closure of the linear span of {b∗ ◦ (ν − ν̃)}b∗∈U equals T̄ (P )⊥.

Whenever T̄ (P )⊥ is infinite dimensional, this condition necessitates θ(P ) to be itself

infinite dimensional, thus motivating our focus on Banach space valued parameters.

Remark 4.2. Theorem 4.2(ii) requires the closure of the linear span of {b∗◦(ν− ν̃)}b∗∈U
to equal T̄ (P )⊥. More generally, however, such closure may be equal to a strict subspace

of T̄ (P )⊥ – for instance whenever the dimension of B is smaller than that of T̄ (P )⊥;

see the GMM discussion below. In such a case, the drift ∆g is nonzero if and only if the

projection of g onto cl{lin{{b∗ ◦ (ν − ν̃)}b∗∈U}} is nonzero. Thus, if {b∗ ◦ (ν − ν̃)}b∗∈U
is not sufficiently rich, then there exists a path t 7→ Pt,g satisfying (42) and for which

∆g = 0 in `∞(U). As a result, a Hausman test based on Ĝn will still provide local size

control but have power no larger than size against certain local alternatives.
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Theorem 4.2 provides the foundation for constructing a specification test, much in

the same manner Lemma 3.1 was exploited to build an infeasible test based on the

untenable knowledge of a subset F of T̄ (P )⊥. In particular, comparing a test statistic

Ψ(Ĝn) to its asymptotic 1−α quantile yields a locally unbiased test for any continuous

subconvex function Ψ : `∞(U)→ R+. Corollary 4.1 illustrates this point by providing an

analogue to Theorem 3.2. While we abstract from the problem of estimating asymptotic

critical values, we note that the use of the bootstrap is automatically justified whenever

it is valid for the asymptotic joint law of the original estimators θ̂n and θ̃n on B×B.

Corollary 4.1. Let Assumptions 2.1, 3.2, 4.1(i), 4.2 hold, and for any α ∈ (0, 1) let

c1−α denote the 1−α quantile of Ψ(G0). Further let U ≡ {b∗k}
dF
k=1 be norm bounded, and

suppose
∑dF

k=1

∫
(b∗k ◦ (ν − ν̃))2dP <∞. If c1−α > 0, then for any path t 7→ Pt,g ∈ P:

lim
n→∞

Pn1/
√
n,g(Ψ(Ĝn) > c1−α) = α . (43)

If in addition cl{lin{{b∗k ◦ (ν − ν̃)}dFk=1}} = T̄ (P )⊥ and t 7→ Pt,g satisfies (42), then

lim inf
n→∞

Pn1/
√
n,g(Ψ(Ĝn) > c1−α) ≥ P (Ψ(G0 + ∆g) > c1−α) > α . (44)

We conclude by illustrating the construction of Hausman tests in the GMM setting.

GMM Illustration (cont). Recall that for every P ∈ P, β(P ) ∈ Θ is the parameter

solving
∫
ρ(·, β(P ))dP = 0 and consider the construction of a Hausman test based on

alternative estimators of θ(P ) ≡ β(P ). In particular, for different dρ×dρ positive definite

matrices W1 and W2, and β̂Wn the estimator defined in (37), it follows that

√
n{β̂W1

n − β̂W2
n } =

1√
n

n∑
i=1

{VW1(P )− VW2(P )}ρ(Xi, β(P )) + op(1) (45)

under Pn, where VW (P ) ≡ (Γ(P )′WΓ(P ))−1Γ(P )′W . Since in this case B = Rdβ ,

the dual space equals B∗ equals Rdβ and as indicated by Theorem 4.2 λ′β{VW1(P ) −
VW2(P )}ρ(·, β(P )) indeed belongs to T̄ (P )⊥ for any λβ ∈ Rdβ .13 Letting ek ∈ Rdβ

denote the vector whose kth coordinate is one and all other coordinated are zero, we

may then set U ≡ {ek}
dβ
k=1 and Ψ : `∞([dβ])→ R+ to be given by Ψ(b) = ‖b‖2 to obtain

Ψ(Ĝn) = ‖
√
n{β̂W1

n − β̂W2
n }‖2 . (46)

We note, however, that the linear span of {e′k{VW1(P ) − VW2(P )}ρ(·, β(P ))}dβk=1 is at

most a dβ-dimensional subspace of T̄ (P )⊥. Thus, since in contrast the dimension of

T̄ (P )⊥ is dρ − dβ (see (9)), it follows that a Hausman test based on (46) will fail to

have power against certain local alternatives when dρ > 2dβ; see Remark 4.2. Such a

13This follows by noting that for any λβ ∈ Rdβ we may set λρ ≡ {VW1(P )′ − VW2(P )′}λβ to obtain
λ′β{VW1(P )− VW2(P )} = λ′ρS(P ), and hence λ′β{VW1(P )− VW2(P )}ρ(·, β(P )) ∈ T̄ (P )⊥ by (9).
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problem can be easily addressed by either considering higher dimensional parameters,

such as the c.d.f. of P , or by comparing more than two estimators – e.g. by employing

(
√
n{β̂W1

n − β̂W2
n },

√
n{β̂W1

n − β̂W3
n }) for different matrices W1, W2, and W3.

5 Nonparametric Conditional Moment Models

In order to demonstrate the utility of our general results, we next study a broad class

of nonparametric conditional moment restriction models.

5.1 General Setup

In what follows, we set X = (Y,Z,W ) for an outcome variable Y ∈ Rdy , a potentially

endogenous variable Z ∈ Rdz , and an exogenous instrument W ∈ Rdw . For a known

function ρ : Rdy ×R→ R, the distribution P of X is then assumed to satisfy

E[ρ(Y, hP (Z))|W ] = 0 (47)

for some unknown function hP : Rdz → R. The model is nonparametric in that we only

require hP (Z) to have a second moment – i.e. we assume hP ∈ L2.

As previously noted by Chen and Pouzo (2012), model (47) may be studied without

requiring differentiability of ρ : Rdy ×R → R provided the conditional expectation is

appropriately “smooth”. To formalize this differentiability requirement, we let L2
Z and

L2
W denote the functions in L2 depending only on Z and W respectively, and define

m(W,h) ≡ E[ρ(Y, h(Z))|W ] . (48)

The following Assumption then imposes the required restrictions on the function ρ.

Assumption 5.1. (i) E[{ρ(Y, h(Z))}2] <∞ for all h ∈ L2
Z ; (ii) m(W, ·) : L2

Z → L2
W is

pathwise differentiable at hP with derivative ∇m(W,hP )[s] ≡ ∂
∂τm(W,hP +τs)|τ=0; (iii)

The map ∇m(W,hP ) : L2
Z → L2

W is linear and continuous; (iv) There exist constants

η,M ∈ R such that 0 < η < M <∞ and P (η < Var{ρ(Y, hP (Z))|W} < M) = 1.

Assumption 5.1(i) and Jensen’s inequality imply that m(W,h) ∈ L2
W for all h ∈ L2

Z ,

and hence we may view m(W, ·) as a map from L2
Z into L2

W . Given the codomain space

of the map m(W, ·), in Assumption 5.1(ii) we further require that m(W, ·) : L2
Z → L2

W be

pathwise (Gateaux) differentiable at hP . In turn, Assumption 5.1(iii) imposes that the

pathwise derivative ∇m(W,hP ) : L2
Z → L2

W be linear and continuous in its direction – a

property that is not guaranteed by pathwise differentiability. Finally, Assumption 5.1(iv)

demands that the conditional variance of ρ(Y, hP (Z)) given W be bounded from above
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and away from zero almost surely. The conditions of Assumption 5.1 are commonly

imposed in the analysis of efficient estimation in conditional moment restriction models.

We similarly require them because we will heavily rely on results from the efficiency

literature in our analysis; see Chamberlain (1992); Ai and Chen (2003, 2012).

The range of the derivative ∇m(W,hP ) : L2
Z → L2

W plays a fundamental role in de-

riving a characterization of local overidentification. We therefore introduce the notation

R ≡ {f ∈ L2
W : f = ∇m(W,hP )[s] for some s ∈ L2

Z} , (49)

and let R̄ denote the closure of R in L2
W – i.e. R̄ denotes the subset of L2

W that can be

arbitrarily well approximated by functions of the form ∇m(W,hP )[s] for some s ∈ L2
Z .

It is worth noting that when Z does not equal W , the presence of an ill-posed inverse

problem and the closed graph theorem imply R cannot equal L2
W . Nonetheless, the

closure R̄ may still equal L2
W even when an ill-posed inverse problem is present.

We illustrate the introduced concepts through the nonparametric instrumental vari-

ables model (NPIV) of Newey and Powell (2003), Hall and Horowitz (2005), and Darolles

et al. (2011), and the nonparametric quantile instrumental variables model (NPQIV) ex-

amined by Chernozhukov et al. (2007), Horowitz and Lee (2007), and Chen et al. (2014).

Example 5.1. (NPIV) The NPIV model corresponds to setting ρ(y, u) = y−u for all

y, u ∈ R, in which case the restriction in (47) reduces to

E[Y − hP (Z)|W ] = 0 . (50)

The map m(W, ·) : L2
Z → L2

W is then given by m(W,h) ≡ E[Y −h(Z)|W ] which, since it

is linear, is trivially pathwise differentiable with derivative∇m(W,hP )[s] = −E[s(Z)|W ]

for any s ∈ L2
Z . In this context, the range R of ∇m(W,hP ) is therefore given by

R = {f ∈ L2
W : f(W ) = E[s(Z)|W ] for some s ∈ L2

Z} . (51)

We also observe that if Z = W , then (50) reduces to the mean regression model.

Example 5.2. (NPQIV) Setting ρ(y, u) = 1{y ≤ u} − τ for τ ∈ (0, 1) in (47) yields

P (Y ≤ hP (Z)|W ) = τ , (52)

which corresponds to the NPQIV model. Thus, in this context m(W, ·) : L2
Z → L2

W is

given by m(W,h) ≡ P (Y ≤ h(Z)|W )−τ for all h ∈ L2
Z . If Y is continuously distributed

conditional on (Z,W ) with a density fY |Z,W that is both bounded and continuous, then

it is possible to show m(W, ·) : L2
Z → L2

W is pathwise differentiable with

∇m(W,hP )[s] = E[fY |Z,W (hP (Z)|Z,W )s(Z)|W ] (53)
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for any s ∈ L2
Z . Therefore, in this model the range R of ∇m(W,hP ) is equal to

R = {f ∈ L2
W : f(W ) = E[fY |Z,W (hP (Z)|Z,W )s(Z)|W ] for some s ∈ L2

Z} . (54)

It is worth noting that when Z = W (52) reduces to a nonparametric quantile regression

model and (53) simplifies to ∇m(Z, hP )[s] = s(Z)fY |Z(hP (Z)|Z).

5.2 Characterization

By relating local overidentification to estimation, Theorem 4.1 enables us to leverage

existing results to analyze the nonparametric conditional moment restriction model in

(47). In particular, efficient estimation in these models is well understood with Ai and

Chen (2012) notably deriving the efficiency bound for a general class of functions of P .

While their results cover intrinsically interesting parameters such as average derivatives,

for our purposes it is convenient to, for any f ∈ L2, focus on the simpler parameter

θf (P ) ≡
∫
fdP . (55)

As argued in Remark 4.1, local just identification is equivalent to the sample mean

being an efficient estimator of θf (P ) for all f in any dense subset D of L2. Thus, we may

characterize local just identification by obtaining necessary and sufficient conditions for

the efficiency bound for θf (P ), denoted Ω∗f , to equal the asymptotic variance of the sam-

ple mean, i.e. Var{f(X)}. The following proposition exploits the explicit formulation

for the efficiency bound Ω∗f derived in Ai and Chen (2012) to accomplish this goal.

Proposition 5.1. Let Assumption 5.1 hold. Then, there exists a dense subset D of L2

such that Var{f(X)} = Ω∗f for all f ∈ D if and only if R̄ = L2
W .

Proposition 5.1 establishes that sample means are efficient if and only if the closure

of the range of ∇m(W,hP ) : L2
Z → L2

W is equal to L2
W . Hence, we conclude that

local just identification in a nonparametric conditional moment restriction model is

equivalent to the requirement R̄ = L2
W while local overidentification corresponds to the

case R̄  L2
W . Heuristically, we may thus understand local overidentification as the

existence of transformations of the instrument (f ∈ L2
W ) that cannot be mimicked by

a Z induced local change in the conditional expectation (∇m(W,hP )[s] for s ∈ L2
Z).

This characterization of local overidentification is analogous to the one obtained in the

GMM context, where L2
W corresponds to the codomain of the restrictions (Rdρ) and R̄

corresponds to the range of the derivative of the moment restrictions (Rdβ ). Thus, local

overidentification (R̄  L2
W ) maps into the case Rdβ  Rdρ – i.e. dβ < dρ. In Remarks

5.1 and 5.2 below, we discuss an alternative characterization of local overidentification,

as well as the implications of imposing additional restrictions on hP .
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Remark 5.1. Since L2
Z and L2

W are both Hilbert spaces, the requirement that R̄ be

equal to L2
W can also be expressed in terms of the adjoint to ∇m(W,hP ) : L2

Z → L2
W ,

which we denote by ∇m(W,hP )∗ : L2
W → L2

Z .14 In particular, R̄ must equal the

orthogonal complement to the null space of ∇m(W,hP )∗, and therefore15

R̄ = L2
W if and only if {0} = {s ∈ L2

W : ∇m(W,hP )∗[s] = 0} ; (56)

i.e. R̄ = L2
W if and only if ∇m(W,hP )∗ is injective. Interestingly, the requirement

that the derivative ∇m(W,hP ) be injective is instrumental in ensuring local identifica-

tion (Chen et al., 2014). Thus, (56) reflects a symmetry between local identification

(injectivity of ∇m(W,hP )) and local just identification (injectivity of ∇m(W,hp)
∗).

Remark 5.2. Imposing restrictions on hP beyond it belonging to L2
Z can reduce the

tangent space T̄ (P ) and therefore affect the characterization of local overidentification.

For instance, if hP is instead assumed to belong to a vector subspace H of L2
Z , then

Proposition 5.1 continues to hold provided R is redefined as (compare to (49)):

R ≡ {f ∈ L2
W : f = ∇m(W,hP )[s] for some s ∈ H} . (57)

Hence, restricting the parameter space from L2
Z to H potentially reduces R̄ and yields

local just identification (R̄ = L2
W ) less tenable. The conclusion that semiparametric

conditional moment restriction models are typically locally overidentified, for example,

follows from Theorem 4.1(ii) and the availability of both efficient and inefficient estima-

tors for such models (Chamberlain, 1992; Ai and Chen, 2003; Chen and Pouzo, 2009).

In fact, the sufficient conditions in Bonhomme (2012) and Chen et al. (2014) for local

identification of Euclidean parameters directly imply the local overidentification of P

even in the presence of partially identified nuisance parameters.16

Exploiting Proposition 5.1 and Remark 5.1, we revisit Examples 5.1 and 5.2 to obtain

simple characterizations of local overidentification in the NPIV and NPQIV models.

Example 5.1 (cont.): Recall that we showed the derivative ∇m(W,hP ) : L2
Z → L2

W

satisfies ∇m(W,hP )[s] = −E[s(Z)|W ] for all s ∈ L2
Z . Hence, its adjoint is given by

∇m(W,hP )∗[s] = −E[s(W )|Z] (58)

for all s ∈ L2
W , and by Proposition 5.1 and Remark 5.1 we conclude local just identifi-

14The adjoint ∇m(W,hP )∗ is the unique continuous linear map from L2
W into L2

Z satisfying∫
{∇m(W,hP )[h]}sdP =

∫
h{∇m(W,hP )∗[s]}dP for all h ∈ L2

Z and s ∈ L2
W .

15See for instance Theorem 6.6.3(2) in Luenberger (1969).
16Examples for identification of Euclidean parameter without identification of an unknown function of

endogenous variables include Santos (2011) (for NPIV), Florens et al. (2012) (for partially linear NPIV)
and Chen et al. (2014) (for single-index IV).
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cation is equivalent to the conditional expectation operator E[·|Z] being injective:

E[s(W )|Z] = 0 implies s(W ) = 0 for all s ∈ L2
W . (59)

The property in (59) is known as the distribution of (Z,W ) being L2-complete with

respect to Z (Andrews, 2011). The related requirement of L2-completeness with respect

to W is necessary for identification, and thus while identification needs W to be a “good”

instrument for Z, local overidentification requires Z to be a “poor” instrument for W .

Since examples of distributions exist for which L2-completeness fails (Santos, 2012), we

conclude P can be locally overidentified even if Z and W are of equal dimension.

Example 5.2 (cont): Given the formulation of the derivative ∇m(W,hP ) in (53), it

is straightforward to characterize its adjoint ∇m(W,hP )∗ as satisfying for any s ∈ L2
W

∇m(W,hp)
∗[s] = E[fY |Z,W (hP (Z)|Z,W )s(W )|Z] . (60)

Since by Proposition 5.1 and Remark 5.1 local just identification is equivalent to injec-

tivity of the adjoint ∇m(W,hP )∗, in this context we obtain the characterization

E[fY |Z,W (hP (Z)|Z,W )s(W )|Z] = 0 implies s(W ) = 0 for all s ∈ L2
W . (61)

We note the similarity of the local just identification condition in the NPIV and NPQIV

models (compare (59) and (61)), though in the latter the presence of the conditional

density fY |Z,W reflects the nonlinearity of the problem.

5.3 Special Case: Exogeneity

In distilling local overidentification to the condition R̄  L2
W , Proposition 5.1 and

our previous results fully characterize whether locally nontrivial specification tests exist

(Theorem 3.2) and whether efficiency considerations should be of concern (Theorem 4.1).

While intuitive, the local overidentification requirement R̄  L2
W is certainly harder to

verify than comparing the dimension of the parameter to the number of restrictions, and

may in fact be untestable without appropriate restrictions on P (Canay et al., 2013).

Fortunately, as we next show, additional structure such as exogeneity of Z can help

further simplify the characterization of local overidentification.

In what follows, we refer to Z as exogenous if it is part of the conditioning variable

W – i.e. W = (Z, V ) for some possibly degenerate variable V .17 Thus, we impose:

Assumption 5.2. (i) W = (Z, V ) and E[WW ′] <∞ (ii) There exists a d0 : Rdw → R

such that d0(W ) is bounded P -a.s. and ∇m(W,hP )[s] = d0(W )s(Z) for all s ∈ L2
Z .

17We recognize this may not be a standard definition of “exogeneity”. However, we employ it due
to the definition reflecting the common practice of conditioning on exogenous variables and because
whether Z is part of W or not is of key importance from a mathematical perspective.
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While Assumption 5.2(i) formalizes the requirement of exogeneity, Assumption 5.2(ii)

strengthens Assumption 5.1(iii) by imposing an additional requirement on the specific

structure of the derivative ∇m(W,hP ) : L2
Z → L2

W – namely that it be of the form

∇m(W,hP )[s] = d0(W )s(Z) for all s ∈ L2
Z . The latter specification is easily verified

whenever ρ : Rdy ×R→ R is partially differentiable in its final argument, in which case

Assumption 5.2(ii) holds under mild conditions with d0(W ) = E[∂hρ(Y, hP (Z))|W ].

In the more general case where ρ : Rdy × R → R is not differentiable but the map

m(W, ·) : L2
Z → L2

W is, Assumption 5.2(ii) can still be verified on a case by case basis.

Under the additional structure provided by Assumption 5.2, the following Proposi-

tion simplifies the characterization of local just identification (R̄ = L2
W ).

Proposition 5.2. If Assumptions 5.1(i)-(ii), 5.2 hold, then R̄ = L2
W if and only if

P (E[V |Z] = V ) = 1 and P (d0(W ) 6= 0) = 1 . (62)

Heuristically, Proposition 5.2 characterizes local just identification in terms of two

key conditions. First, V must be a deterministic function of Z (E[V |Z] = V ) thus

preventing W from possessing variation that is unexplained by Z. Second, the derivative

∇m(W,hP ) : L2
Z → L2

W must be injective (d0(W ) 6= 0), which is a condition often

associated with local identification (Chen et al., 2014). In the present context, however,

local just identification is also intrinsically linked to the rank condition on the derivative

∇m(W,hP ) due to the latter being self-adjoint when Z = W ; see Remark 5.3.

Remark 5.3. Whenever Z = W we have L2
Z = L2

W and the derivative ∇m(W,hP ) :

L2
W → L2

W satisfying Assumption 5.2(ii) implies it is self-adjoint. Since, as argued

in Remark 5.1, local just identification is equivalent to the adjoint ∇m(W,hP )∗ being

injective, it follows that under self-adjointness local just identification is tantamount to

injectivity of ∇m(W,hP ) – a requirement that reduces to P (d0(W ) 6= 0) = 1 under

Assumption 5.2(ii). It is worth noting that injectivity of ∇m(W,hP ) is a strictly weakly

requirement than its invertibility, which fails for instance if E[{d0(W )}−2] =∞.

5.4 Discussion: Two Step Procedures

In conjunction with our previous results, Propositions 5.1 and 5.2 have strong impli-

cations for the estimation of regular parameters in nonparametric conditional moment

restrictions models with or without endogeneity.

For the special case in which the conditioning variable (W ) equals the argument

of the nonparametric function (Z), an extensive literature has examined estimation of

functionals of hP such as the average derivative or consumer surplus (Powell et al.,

1989; Newey and Stoker, 1993). A common feature of these estimation problems is
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that “plug-in” estimators are efficient and moreover that their asymptotic distribution

is invariant to the choice of estimator for hP (Newey, 1994). This classical result is in

fact immediately implied by Theorem 4.1(i) whenever P is locally just identified, since

we may always view regular functionals, such as the average derivatives of hP , as a

parameter θ : P → R. In particular, by Proposition 5.2 we conclude regular plug-in

estimators must be efficient whenever condition (62) is satisfied.

Our results, however, further imply that plug-in estimators of functionals of hP

need not be efficient when P is locally overidentified by P. For instance, even under

exogeneity of Z, Proposition 5.2 and Theorem 4.1(ii) imply plug-in estimators may fail

to be efficient whenever W contains variation unexplained by Z – i.e. condition (62)

fails.18 Analogously, we also conclude that plug-in estimators of regular parameters need

not be efficient when Z is endogenous since, as illustrated by Examples 5.1 and 5.2, P

may be locally overidentified in such problems; see also Remark 5.4. We note, however,

that as shown in Ai and Chen (2012) efficient estimators of functionals of hP may still

be available when P is locally overidentified and, as implied by Theorem 4.2, employed

to construct Hausman tests if desired.

Remark 5.4. Building on Newey and Powell (1999), Ackerberg et al. (2014) show

that with an “exactly identified” nonparametric conditional moment model first step,

semiparametric two step GMM estimation can be fully efficient. The key requirements

they refer to as “exact identification” are that Z = W in the conditional moment

restriction (5.2) and that d0(W ) 6= 0 almost surely. Our analysis complements theirs,

since Proposition 5.2 establishes their “exact identification” requirement is equivalent

to P being locally just identified by the first stage nonparametric conditional moment

restriction. We also conclude from our results that semiparametric two step estimation

can be inefficient when (i) Z is exogenous but Z  W , (ii) Further restrictions are

imposed on hP (Remark 5.2), or (iii) Z is endogenous as in NPIV.

6 Conclusion

This paper reinterprets the common practice of counting the number of restrictions

and parameters in GMM to determine overidentification as an approach that implicitly

examines the tangent space T̄ (P ) as a subset of L2
0. This abstraction naturally leads

to the notion of local overidentification, which we show is responsible for an intrinsic

link between the semiparametric efficient estimation of regular parameters and the local

testability of a model. When applied to nonparametric conditional moment restriction

18We emphasize this conclusion does not contradict the results of Newey (1994), who in establishing
the first order equivalence of asymptotically linear and regular estimators imposes a condition that is
tantamount to P being locally just identified.
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models, we obtain a simple condition that determines both whether the model is locally

testable and whether efficiency gains are available in estimating regular parameters.

This paper assumes that P is the distribution of a single observation from an i.i.d.

sample for the sake of simplicity. Most of the results carry over to weakly dependent

data. There is some work (such as Ploberger and Phillips (2012) and the references

therein) on applying limits of experiments to specific models with nonstationary, strongly

dependent data. We conjecture that many results in this paper could be extended to

general semi/nonparametric models with temporal or/and spatial dependent processes

by using limits of experiments theories for martingales and conditional scores. We leave

such extension for future work.
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Appendix A - Proof of Main Results

The following list includes notation and definitions that will be used in the appendix.

[d] For an integer d > 0, the set [d] ≡ {1, 2, · · · , d}.
`∞(A) For a set A, `∞(A) ≡ {f : A→ R : supa∈A |f(a)| <∞}.
L2

0 The set L2
0 ≡ {g :

∫
gdP = 0 and

∫
g2dP <∞}.

T̄ (P ) The closure of T (P ) ≡ {g ∈ L2
0 : (1) holds for some t 7→ Pt,g ∈ P}.

T̄ (P )⊥ The complement T̄ (P )⊥ ≡ {g ∈ L2
0 :
∫
gfdP = 0 for all f ∈ T̄ (P )}.

Proof of Theorem 3.1: First note that for any g ∈ L2
0 it is possible to construct

a path t 7→ Pt,g whose score is indeed g; see Example 3.2.1 in Bickel et al. (1993) for

a concrete construction. Moreover, further observe that any two paths t 7→ P̃t,g and

t 7→ Pt,g with the same score g satisfy by 0 ≤ φn ≤ 1 and Lemma B.1:

lim
n→∞

|
∫
φndP̃

n
1/
√
n,g −

∫
φndP

n
1/
√
n,g| ≤ lim

n→∞

∫
|dPn1/√n,g − dP̃

n
1/
√
n,g| = 0 . (A.1)

For each g ∈ L2
0 we may therefore select an arbitrary path t 7→ Pt,g whose score is indeed

g, and for B the Borel σ-algebra on R we consider the sequence of experiments

En ≡ (Rdn,Bdn,
n⊗
i=1

P1/
√
n,g : g ∈ L2

0) . (A.2)

Next note that since {ψTk }
dT
k=1 ∪ {ψ

⊥
k }

d
T⊥
k=1 forms an orthonormal basis for L2

0, we obtain

from Lemma B.3 that En converges weakly to the experiment E given by

E ≡ (RdT ×Rd
T⊥ ,BdT × BdT⊥ , Qg : g ∈ L2

0) , (A.3)

where we have exploited that for dP ≡ dim{L2
0} we have RdT × Rd

T⊥ = RdP and

BdT × BdT⊥ = BdP . The existence of a test function φ : RdT ×Rd
T⊥ → [0, 1] satisfying

(17) then follows from Theorem 7.1 in van der Vaart (1991a).

To conclude the proof, it only remains to show that φ must controls size in (14). To

this end, note that ΠT⊥(g) = 0 if and only if g ∈ T̄ (P ). Fixing δ > 0 then observe that

for any g ∈ T̄ (P ) there exists a g̃ ∈ T (P ) such that ‖g − g̃‖L2 < δ. Moreover, since

g̃ ∈ T (P ), there exists a path t 7→ P̃t,g̃ ∈ P with score g̃ and hence∫
φdQg = lim

n→∞

∫
φndP

n
1/
√
n,g

≤ lim
n→∞

∫
φndP̃

n
1/
√
n,g̃ + lim sup

n→∞

∫
|dPn1/√n,g − dP̃

n
1/
√
n,g̃|

≤ α+ 2{1− exp{−δ
2

4
}}1/2 , (A.4)
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where the first inequality employed that 0 ≤ φn ≤ 1 and the second inequality exploited

(16) and Lemma B.1. Since δ > 0 was arbitrary, we conclude from (A.4) that
∫
φdQg ≤ α

whenever g ∈ T̄ (P ) and the Theorem follows.

Proof of Corollary 3.1: The proof proceeds by contradiction. First note that if

(18) does not hold, then we may pass to a subsequence {nk}∞k=1 such that

lim
k→∞

inf
{g∈L2

0:‖Π
T⊥ (g)‖L2≥B}

∫
φnkdP

nk
1/
√
nk,g
≥M0 (A.5)

for some constant M0 > P (X 2(B) ≥ χ2
1−α). Further observe that by Theorem 3.1, there

exists a level α test φ of (14) such that for every path t 7→ Pt,g we have

lim
k→∞

∫
φnkdP

nk
1/
√
nk,g

=

∫
φdQg . (A.6)

Moreover, by results (A.5), (A.6), T̄ (P )⊥ ⊆ L2
0, and g = ΠT⊥(g) for all g ∈ T̄ (P )⊥,

M0 ≤ inf
{g∈L2

0:‖Π
T⊥ (g)‖L2≥B}

∫
φdQg ≤ inf

{g∈T̄ (P )⊥:‖g‖L2≥B}

∫
φdQg . (A.7)

Let Φ denote the standard normal measure on R, and note that for any g ∈ T̄ (P )⊥,

the measure Qg is such that: (i) Y is independent of Z, (ii) Y ∼
⊗dT

k=1 Φ, and (iii)

Z ∼
⊗d

T⊥
k=1 Φ(· − hg,k) where hg,k ≡

∫
gψ⊥k dP . For each z ∈ Rd

T⊥ then define

φ̄(z) ≡ E[φ(Y, z)] , (A.8)

where the expectation is taken with respect to Y ∼
⊗dT

i=1 Φ. We then obtain that

inf
{g∈T̄ (P )⊥:‖g‖L2≥B}

∫
φdQg = inf

{h∈Rd
T⊥ :‖h‖≥B}

∫
φ̄d{

d
T⊥⊗
k=1

Φ(· − hk)} , (A.9)

by (A.8), the law of iterated expectations, and noting T̄ (P )⊥ is isometrically isomorphic

to Rd
T⊥ via the map Υ(g) = (hg,1, . . . , hg,d

T⊥
)′ due to {ψ⊥k }

d
T⊥
k=1 being an orthonormal

basis of T̄ (P )⊥ and dT⊥ <∞. Finally, we observe that φ̄ also satisfies

∫
φ̄d{

d
T⊥⊗
k=1

Φ} =

∫
φdQ0 ≤ α , (A.10)

by (A.8), φ being a level α test of (14), and 0 trivially satisfying ΠT⊥(0) = 0. In

particular, φ̄ is a level α test based on a single observation of Z of the null hypothesis

Z ∼
⊗d

T⊥
k=1 Φ against the alternative hypothesis that Z ∼

⊗d
T⊥
k=1 Φ(· − hk) for some

(h1, . . . , hd
T⊥

)′ = h 6= 0. By Problem 8.29 in Lehmann and Romano (2005), the maximin
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power for such a hypothesis testing problem is given by

inf
{h∈Rd

T⊥ :‖h‖≥B}

∫
φ̄d{

d
T⊥⊗
k=1

Φ(· − hk)} ≤ P (X 2(B) ≥ χ2
1−α) . (A.11)

Results (A.7) and (A.9), however, contradict (A.11) and the Corollary follows.

Proof of Corollary 3.2: By Theorem 3.1, there exists a level α test φ of (14) with

lim
n→∞

∫
φndP

n
1/
√
n,g =

∫
φdQg . (A.12)

However, if P is just identified at P , then T̄ (P ) = L2
0, or equivalently T̄ (P )⊥ = {0}.

Therefore, the null hypothesis in (14) holds for all g ∈ L2
0, which implies

∫
φdQg ≤ α

for all g ∈ L2
0, and the claim of the Corollary then follows from (A.12).

Proof of Lemma 3.1: First note that since {fk}dFk=1 is such that
∑dF

k=1

∫
f2
kdP < ∞

by Assumption 3.1, Theorem 2.13.1 in van der Vaart and Wellner (1996) implies F is

P -Donsker. Moreover, since F ⊆ T̄ (P )⊥ ⊆ L2
0, it also follows that

∫
fdP = 0 for all

f ∈ F . Hence, Theorem 3.10.12 in van der Vaart and Wellner (1996) lets us conclude

that for any path t 7→ Pt,g, we have (as a process in `∞([dF ])) that

Gn
Ln,g→ G0 + ∆g . (A.13)

The first claim of the Lemma then follows immediately since t 7→ Pt,g ∈ P implies

g ∈ T (P ) and hence
∫
gfdP = 0 for all f ∈ F due to F ⊆ T̄ (P )⊥.

Next observe Lemma B.1 implies that if t 7→ Pt,g satisfies (26) then we must have

g /∈ T̄ (P ) . (A.14)

Moreover, since T̄ (P ) is a linear space by Assumption 2.1(ii), Theorem 3.4.1 in Luen-

berger (1969) implies g = ΠT (g) + ΠT⊥(g). Thus, since g /∈ T̄ (P ) by (A.14) we obtain∫
g{ΠT⊥(g)}dP =

∫
{ΠT (g) + ΠT⊥(g)}{ΠT⊥(g)}dP =

∫
{ΠT⊥(g)}2dP > 0 . (A.15)

Furthermore, since ΠT⊥(g) ∈ T̄ (P )⊥, it follows that if cl{lin{F}} = T̄ (P )⊥, then there

exists an integer K <∞ and a sequence of scalars {αk}Kk=1 such that

‖ΠT⊥(g)−
K∑
k=1

αkfk‖L2 <
1

2

‖ΠT⊥(g)‖2L2

‖g‖L2

. (A.16)
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Therefore, from (A.15) and (A.16), and the Cauchy-Schwarz inequality we obtain that

∫
g{

K∑
k=1

αkfk}dP

≥
∫
g{ΠT⊥(g)}dP − |

∫
g{ΠT⊥(g)−

K∑
k=1

αkfk}dP | ≥
1

2
‖ΠT⊥(g)‖2L2 > 0 . (A.17)

We conclude from (A.17) that
∫
gfkdP 6= 0 for some fk ∈ F and the Lemma follows.

Proof of Theorem 3.2: For the first claim, note that Assumption 3.1, Lemma 3.1,

and the continuous mapping theorem imply that under any t 7→ Pt,g ∈ P

Ψ(Gn)
Ln,g→ Ψ(G0) . (A.18)

We further observe that G0 is tight in `∞([dF ]) by Lemma 3.1 and Radon by Lemma

A.3.11 in Bogachev (1998). Next note for any t > 0, continuity of Ψ, Ψ(0) = 0, and

Ψ(b) ≥ 0 for all b ∈ `∞([dF ]) imply there is a neighborhood Nt of 0 ∈ `∞([dF ]) such

that 0 ≤ Ψ(b) ≤ t for all b ∈ Nt. Thus, we can conclude that

P (Ψ(G0) ≤ t) ≥ P (G0 ∈ Nt) > 0 , (A.19)

where the final inequality follows from 0 ∈ `∞([dF ]) being in the support of G0 by

Theorem 3.6.1 in Bogachev (1998). We therefore obtain that

t0 ≡ inf{t : P (Ψ(G0) ≤ t) > 0} = 0 , (A.20)

and from (A.20) and Theorem 11.1 in Davydov et al. (1998) that the cdf of Ψ(G0) is

continuous everywhere except possibly at t0 = 0. Since c1−α > 0 by hypothesis, the cdf

of Ψ(G0) is in fact continuous at c1−α, and thus we can conclude from (A.18) that

lim
n→∞

Pn1/
√
n,g(Ψ(Gn) > c1−α) = P (Ψ(G0) > c1−α) = α . (A.21)

For the second claim of the Lemma, recall ∆g ≡ {∆g,k}dFk=1 ∈ `
∞([dF ]) is defined by

∆g,k ≡
∫
gfkdP . (A.22)

Lemma 3.1, {b ∈ `∞([dF ]) : Ψ(b) > c1−α} being open by continuity of Ψ, and Theorem

1.3.4 in van der Vaart and Wellner (1996) then imply that

lim inf
n→∞

Pn1/
√
n,g(Ψ(Gn) > c1−α) ≥ P (Ψ(G0 + ∆g) > c1−α) . (A.23)

Moreover, note that since G0 is Radon, Lemma B.5 further implies that −∆g is in the
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support of G0. Hence, arguing as in (A.19) and (A.20) it follows that

inf{t : P (Ψ(G0 + ∆g) ≤ t) > 0} = 0 . (A.24)

Since Ψ(· + ∆g) : `∞([dF ]) → R+ is convex, result (A.24) and a second application

of Theorem 11.1 in Davydov et al. (1998) implies the cdf of Ψ(G0 + ∆g) is continuous

everywhere except possible at 0. In particular, since c1−α > 0, we obtain that

P (Ψ(G0 + ∆g) > c1−α) = 1− P (Ψ(G0 + ∆g) < c1−α) . (A.25)

Finally, we note that since G0 is centered and Radon, Theorem 3.6.1 in Bogachev (1998)

implies its support is a separable vector subspace of `∞([dF ]), and hence a separable

Banach subspace under ‖ · ‖∞. Since ∆g is in the support of G0, we can finally conclude

P (Ψ(G0 + ∆g) < c1−α) < P (Ψ(G0) < c1−α) = 1− α (A.26)

by Lemma B.4 and 0 6= ∆g by Lemma 3.1. The second claim of the Theorem then

follows from results (A.23), (A.25) and (A.26).

Proof of Theorem 4.1: We first note that since T (P ) is linear by Assumption 2.1(ii),

and θ̂n is regular by Assumption 4.1(ii), Lemma B.6 and Theorem 5.2.3 in Bickel et al.

(1993) imply θ is pathwise differentiable at P – i.e. there exists a bounded linear operator

θ̇ : T̄ (P )→ B such that for any t 7→ Pt,g ∈ P it follows that

lim
t→0
‖t−1{θ(Pt,g)− θ(P )} − θ̇(g)‖B = 0 . (A.27)

Then note that for any b∗ ∈ B∗, b∗ ◦ θ̇ : T̄ (P ) → R is a continuous linear functional.

Hence, since T̄ (P ) is a Hilbert space under ‖ · ‖L2 , the Riesz representation theorem

implies there exists a θ̇b∗ ∈ T̄ (P ) such that for all g ∈ T̄ (P ) we have that

b∗(θ̇(g)) =

∫
θ̇b∗gdP . (A.28)

Moreover, since θ̂n is an asymptotically linear estimator of θ(P ), it follows that b∗(θ̂n) is

an asymptotically linear estimator of b∗(θ(P )) with influence function b∗◦ν. Proposition

3.3.1 in Bickel et al. (1993) then implies that for all g ∈ T̄ (P )∫
{θ̇b∗ − b∗ ◦ ν}gdP = 0 . (A.29)

Analogously, if θ̃n : {Xi}ni=1 → B is an asymptotically linear regular estimator satisfying

√
n{θ̃n − θ(P )} =

1√
n

n∑
i=1

ν̃(Xi) + op(1) (A.30)
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for some ν̃ : Rdx → B, then it follows that (A.29) also holds with ν̃ in place of ν, yielding∫
{b∗ ◦ ν − b∗ ◦ ν̃}gdP = 0 (A.31)

for all g ∈ T̄ (P ). If P is just identified by P, however, then T̄ (P ) = L2
0, which implies

P (b∗(ν(Xi)) = b∗(ν̃(Xi))) = 1 , (A.32)

for all b∗ ∈ B∗ by result (A.31). Thus, since ‖b‖B = sup‖b∗‖B∗=1 b
∗(b), see for example

Lemma 6.10 in Aliprantis and Border (2006), we can conclude by (A.32) that

P (‖ν(Xi)− ν̃(Xi)‖B = 0) = P ( sup
‖b∗‖B∗=1

b∗(ν(Xi)− ν̃(Xi)) = 0) = 1 . (A.33)

The first claim of the Theorem then follows from (A.30), (A.33), and Assumption 4.1(ii).

In order to establish the second claim of the Theorem, note that if P is overidentified

by P, then there exists a 0 6= g⊥ ∈ T̄ (P )⊥. For an arbitrary 0 6= b̃ ∈ B we then define

θ̃n ≡ θ̂n + b̃× { 1

n

n∑
i=1

g⊥(Xi)} . (A.34)

Since θ̂n is asymptotically linear by Assumption 4.1(ii) we then immediately conclude

√
n{θ̃n − θ(P )} =

1√
n

n∑
i=1

{ν(Xi) + b̃× g⊥(Xi)}+ op(1) . (A.35)

Setting ν̃(Xi) ≡ ν(Xi) + b̃ × g⊥(Xi), we obtain for any b∗ ∈ B∗ that b∗(ν̃) = {b∗(ν) +

b∗(b̃) × g⊥} ∈ L2
0 since b∗(ν) ∈ L2

0 by Assumption 4.1(ii) and g⊥ ∈ T̄ (P )⊥ ⊆ L2
0.

Hence, (A.35) implies θ̃n is indeed asymptotically linear and its influence function equals

ν̃. Moreover, by Lemma B.6, (
√
n{θ̂n − θ(P )}, 1√

n

∑n
i=1 g

⊥(Xi)) converge jointly in

distribution in B×R under
⊗n

i=1 P and hence by the continuous mapping theorem

√
n{θ̃n − θ(P )} =

√
n{θ̂n − θ(P )}+ b̃× { 1√

n

n∑
i=1

g⊥(Xi)}
L→ Z (A.36)

on B under
⊗n

i=1 P for some tight Borel random variable Z. In addition, we have

√
n{θ̂n − θ̃n} = b̃× { 1√

n

n∑
i=1

g⊥(Xi)}
L→ ∆ (A.37)

by the central limit and continuous mapping theorems. Further note that since b̃ 6= 0,

we trivially have ∆ 6= 0 in B because b∗(∆) ∼ N(0, ‖b∗(b̃)g⊥‖2L2).

Thus, to conclude the proof it only remains to show that θ̃n is regular. To this end
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let t 7→ Pt,g ∈ P and set Ln,g ≡
⊗n

i=1 P1/
√
n,g. By Lemma 25.14 in van der Vaart (1998)

n∑
i=1

log(
dP1/

√
n,g

dP
(Xi)) =

1√
n

n∑
i=1

g(Xi)−
1

2

∫
g2dP + op(1) (A.38)

under
⊗n

i=1 P , and thus Example 3.10.6 in van der Vaart and Wellner (1996) implies⊗n
i=1 P and

⊗n
i=1 P1/

√
n,g are mutually contiguous. Moreover, since θ̃n is asymptotically

linear, Lemma B.6 implies (
√
n{θ̃n − θ(P )}, 1√

n

∑n
i=1 g(Xi)) converge jointly in B×R.

Thus, by (A.38) and Lemma A.8.6 in Bickel et al. (1993) we obtain that

√
n{θ̃n − θ(P )} Ln,g→ Zg (A.39)

for some tight Borel Zg on B. Hence, combining results (A.27) and (A.39) implies

√
n{θ̃n − θ(P1/

√
n,g)}

Ln,g→ Zg + θ̇(g) . (A.40)

Next note for any b∗ ∈ B∗, results (A.35), (A.38) and the central limit theorem yield

( √n{b∗(θ̃n)− b∗(θ(P ))}∑
i log(

dP1/
√
n,g

dP (Xi))

)
L→ N

([ 0

−1
2

∫
g2dP

]
,Σ
)

(A.41)

under
⊗n

i=1 P , where since
∫
gg⊥dP = 0 due to g ∈ T (P ) and g⊥ ∈ T̄ (P )⊥, we have

Σ =
[ ∫ (b∗(ν) + b∗(b̃)g⊥)2dP

∫
b∗(ν)gdP∫

b∗(ν)gdP
∫
g2dP

]
. (A.42)

Notice, however, that by results (A.28) and (A.29) it follows that
∫
b∗(ν)gdP = b∗(θ̇(g)).

Therefore, results (A.41), (A.42), and Lemma A.9.3 in Bickel et al. (1993) together imply

√
n{b∗(θ̃n)− b∗(θ(P1/

√
n,g))}

Ln,g→ N(0,

∫
(b∗(ν) + b∗(b̃)g⊥)2dP ) . (A.43)

Define ζb∗(Xi) ≡ {b∗(ν(Xi)) + b∗(b̃)g⊥(Xi)}, and for any finite collection {b∗k}Kk=1 ⊂ B∗

let (Wb∗1
, . . . ,Wb∗K

) denote a multivariate normal vector with E[Wb∗k
] = 0 for all 1 ≤

k ≤ K and E[Wb∗k
Wb∗j

] = E[ζb∗k(Xi)ζb∗j (Xi)] for any 1 ≤ j ≤ k ≤ K. Letting Cb(R
K)

denote the set of continuous and bounded functions on RK , we then obtain from (A.39),

(A.43), the Cramer-Wold device, and the continuous mapping theorem that

E[f(b∗1(Zg + θ̇(g)), . . . , b∗K(Zg + θ̇(g)))] = E[f(b∗1(Wb∗1
), . . . , b∗K(Wb∗K

))] , (A.44)

for any f ∈ Cb(R
K). Since G ≡ {f ◦ (b∗1, . . . , b

∗
K) : f ∈ Cb(R

K), {b∗k}Kk=1 ⊂ B∗, 1 ≤
K <∞} is a vector lattice that separates points in B, it follows from Lemma 1.3.12 in

van der Vaart and Wellner (1996) that there is a unique tight Borel measure W on B
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satisfying (A.44). In particular, since the right hand side of (A.44) does not depend on

g, we conclude the law of Zg + θ̇(g) is constant in g, establishing the regularity of θ̃n.

Proof of Theorem 4.2: Let F : B → `∞(U) be given by F (b) = b∗ 7→ b∗(b) for any

b ∈ B. Since U ⊂ B∗ is norm bounded, and in addition we have

‖F (b1)− F (b2)‖∞ = sup
b∗∈U
|b∗(b1)− b∗(b2)| ≤ sup

b∗∈U
‖b∗‖B∗ × ‖b1 − b2‖B (A.45)

it follows that F is continuous, in fact Lipschitz. Hence, Assumption 4.2(ii) and the

continuous mapping theorem imply
√
n{θ̂n − θ̃n} converges in distribution in B, while

the continuity of F and a second application of the continuous mapping theorem yield

Ĝn
L→ G0 (A.46)

under
⊗n

i=1 P on `∞(U) for some tight G0. Next, define a process Ḡn on `∞(U) by

Ḡn(b∗) ≡ 1√
n

n∑
i=1

b∗(ν(Xi)− ν̃(Xi)) , (A.47)

and note that since θ̂n and θ̃n are asymptotically linear by Assumption 4.2(i) we have

sup
b∗∈U
|Ĝn(b∗)− Ḡn(b∗)|

≤ sup
b∗∈U
‖b∗‖B∗ × ‖

√
n{θ̂n − θ̃n} −

1√
n

n∑
i=1

{ν(Xi)− ν̃(Xi)}‖B = op(1) . (A.48)

In particular, letting F ≡ {f : Rdx → R : f = b∗(ν − ν̃) for some b∗ ∈ U}, we conclude

from (A.46) and (A.48) that Ḡn
L→ G0 under

⊗n
i=1 P , or equivalently, that F is P -

Donsker. Moreover, since
⊗n

i=1 P and
⊗n

i=1 P1/
√
n,g are mutually contiguous by (A.38)

and Corollary 12.3.1 in Lehmann and Romano (2005), it follows from (A.48) that Ĝn =

Ḡn + op(1) on `∞(U) under
⊗n

i=1 P1/
√
n,g as well. We therefore obtain that

Ĝn = Ḡn + op(1)
Ln,g→ G0 + ∆g (A.49)

by Theorem 3.10.12 in van der Vaart and Wellner (1996), which verifies (41).

The claim that b∗(ν − ν̃) ∈ T̄ (P )⊥ has already been shown in the proof of Theorem

4.1, see result (A.31). Since g ∈ T (P ) whenever t 7→ Pt,g ∈ P it is then immediate that

∆g(b
∗) =

∫
b∗(ν − ν̃)gdP = 0 for all b∗ ∈ B∗, and hence ∆g = 0 in `∞(U). On the

other hand, if t 7→ Pt,g satisfies (42), then Lemma B.1 implies g /∈ T̄ (P ). The fact that

∆g(b
∗) 6= 0 for some b∗ ∈ U can then be established using the same arguments as in

(A.15)-(A.17), which establishes the second claim of the Theorem.

Proof of Corollary 4.1: Let F ≡ {b∗k ◦ (ν − ν̃)}dFk=1 and note that by Theorem
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4.2 F ⊂ T̄ (P )⊥ while
∑dF

k=1

∫
(b∗k ◦ (ν − ν̃))2dP < ∞ by hypothesis. Thus, F satisfies

Assumption 3.1 and moreover by (24), (A.47), and (A.48) it follows that Ĝn = Gn+op(1).

The Corollary then follows by arguments identical to those in Theorem 3.2.

Proof of Proposition 5.1: Throughout, we let L∞ ≡ {f : |f | is bounded P -.a.s.},
set L∞W and L∞Z to denote the subsets of L∞ depending only on W and Z respectively,

and recall L2
W and L2

Z are analogously defined. In addition, defining the set V by

V ≡ {f ∈ L2 : f(X) = {ρ(Y, hP (Z))v(W ) +C} P -a.s. for some v : Rdw → R, C ∈ R} ,

we then set the desired subset D with which we will work to be given by D ≡ L∞ \ V.

It is then immediate that D is a subset of L2 since D ⊆ L∞ ⊂ L2. To establish that D
is dense in L2 with respect to ‖ · ‖L2 , note that the fact that Var{ρ(Y, hP (Z))|W} > 0

almost surely implies ρ(Y, hP (Z)) is not a measurable function of W . Furthermore, also

note that for any functions g ∈ L∞W and f ∈ L∞, and εn ↓ 0 it follows that

lim
n→∞

‖{gεn + f} − f‖L2 = 0 , (A.50)

and moreover setting g = 0 if f /∈ V and g ∈ L∞W nonconstant if f ∈ V we conclude that

gεn + f ∈ L∞ \ V since V is closed under addition and as argued nonconstant g ∈ L2
W

do not belong to V. In particular, it follows from (A.50) that D is dense in L∞ with

respect to ‖ · ‖L2 and hence also in L2 by denseness of L∞ in L2.

While we avoided stating an explicit formulation for Ω∗f in the main text for ease

of exposition, it is now necessary to characterize it for all f ∈ D. To this end, we let

Σf ≡ Var{f(X)}, and following Ai and Chen (2012) for any f ∈ D define

Σ2(W ) ≡ E[{ρ(Y, hP (Z))}2|W ] (A.51)

Λ(W ) ≡ E[f(X)ρ(Y, hP (Z))|W ]{Σ2(W )}−1 (A.52)

Σ1 ≡ Var{f(X)− Λ(W )ρ(Y, hP (Z))} . (A.53)

Further notice that: (i) {Σ2(W )}−1 ∈ L∞ since P (Σ2(W ) > η) = 1 for some η > 0 by

hypothesis, (ii) Λ(W ) ∈ L2 due to f ∈ D ⊂ L∞, {Σ2(W )}−1 ∈ L∞, Assumption 5.1(i),

and Jensen’s inequality, (iii) Σ1 > 0 since f /∈ V, and (iv) by direct calculation:

Σ1 = Σf − E[{Λ(W )}2Σ2(W )] . (A.54)

Hence, in our context the Fisher norm of a s ∈ L2
Z is (see eq. (4) in Ai and Chen (2012)):

‖s‖2w ≡ E[{∇m(W,hP )[s]}2{Σ2(W )}−1] + {Σ1}−1{E[Λ(W )∇m(W,hP )[s]]}2 , (A.55)

and note ‖s‖2w < ∞ for any s ∈ L2
Z since {Σ2(W )}−1 ∈ L∞W , Λ(W ) ∈ L2, and

∇m(W,hP )[s] ∈ L2
W by Assumption 5.1(ii). Letting W denote the closure of L2

Z under
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‖ · ‖w, Theorem 2.1 in Ai and Chen (2012) then establishes that

{Ω∗f}−1 = inf
s∈W

{
{Σ1}−1{1 + E[Λ(W )∇m(W,hP )[s]]}2

+ E[{Σ2(W )}−1{∇m(W,hP )[s]}2]
}
. (A.56)

It is convenient for our purposes, however, to exploit the structure of our problem

to further simplify (A.56). To this end, note that by (A.55) and Cauchy-Schwarz

|E[{Σ2(W )}−1{∇m(W,hP )[s1]}2]− E[{Σ2(W )}−1{∇m(W,hP )[s2]}2]|

≤ {E[{Σ2(W )}−1{∇m(W,hP )[s1 + s2]}2]}
1
2 × ‖s1 − s2‖w . (A.57)

Similarly, by (A.52), (A.55), and the Cauchy Schwarz inequality we also obtain

|E[Λ(W )∇m(W,hP )[s1]]− E[Λ(W )∇m(W,hP )[s2]]|

≤ {E[{Σ2(W )}−1{E[f(X)ρ(Y, hP (Z))|W ]}2]}
1
2 × ‖s1 − s2‖w , (A.58)

where we note E[f(X)ρ(Y, hP (Z))|W ] ∈ L2 due to Assumption 5.1(i) and f ∈ L∞.

Thus, results (A.57) and (A.58) imply that the objective in (A.56) is continuous in

‖ · ‖w. Therefore, since W is the completion of L2
Z under ‖ · ‖w, it then follows that

{Ω∗f}−1 = inf
s∈L2

Z

{
{Σ1}−1{1 + E[Λ(W )∇m(W,hP )[s]]}2

+ E[{Σ2(W )}−1{∇m(W,hP )[s]}2]
}
. (A.59)

Next, recall R = {f ∈ L2
W : f(W ) = ∇m(W,hP )[s] for some s ∈ L2

Z}, R̄ denotes its

closure in L2
W , and note R̄ is a subspace of L2

W by linearity of ∇m(W,hP ). By (A.59),

{Ω∗f}−1 = inf
r∈R̄
{{Σ1}−1{1 + E[Λ(W )r(W )]}2 + E[{Σ2(W )}−1{r(W )}2]}

= min
r∈R̄
{{Σ1}−1{1 + E[Λ(W )r(W )]}2 + E[{Σ2(W )}−1{r(W )}2]} , (A.60)

where attainment follows from R̄ being a vector space, the criterion being convex and

diverging to infinity as ‖r‖L2 ↑ ∞, and Proposition 38.15 in Zeidler (1984). In particular,

note that if r0 is the minimizer of (A.60), then for any δ ∈ R̄ we must have

E[δ(W ){r0(W ){Σ2(W )}−1 + Λ(W ){Σ1}−1{1 + E[Λ(W )r0(W )]}}] = 0 . (A.61)

Next, we aim to solve the optimization problem in (A.60) under the hypothesis that

R̄ = L2
W . In that case, (A.61) must hold for all δ ∈ L2

W , which implies

r0(W ) = −{Σ1}−1{1 + E[Λ(W )r0(W )]}Λ(W )Σ2(W ) . (A.62)
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It is evident from (A.62) that r0(W ) = −Λ(W )Σ2(W )C0 for some C0 ∈ R, and by

plugging into (A.62) we can solve for C0 and exploit (A.54) to obtain

r0(W ) = −{Σf}−1Λ(W )Σ2(W ) . (A.63)

Thus, combining (A.60) and (A.63), and repeatedly exploiting (A.54) we conclude

{Ω∗f}−1 = {Σ1}−1{1− {Σf}−1E[{Λ(W )}2Σ2(W )]}2 + {Σf}−2E[{Λ(W )}2Σ2(W )]

= Σ1{Σf}−2 + {Σf}−2E[{Λ(W )}2Σ2(W )] = {Σf}−1 , (A.64)

or equivalently, that Ω∗f = Σf . While (A.64) was derived under the supposition that

R̄ = L2
W , we note that since R̄ ⊆ L2

W , the minimum in (A.60) is attained, and r0(W ) =

−{Σf}−1Λ(W )Σ2(W ) is the unique minimizer on L2
W , we obtain from (A.63) that

Ω∗f = Σf if and only if − {Σf}−1Λ(W )Σ2(W ) ∈ R̄ . (A.65)

Since result (A.65) holds for all f ∈ D and R̄ is a vector space, (A.52) yields

Ω∗ = Σf ∀f ∈ D if and only if E[f(X)ρ(Y, hP (Z))|W ] ∈ R̄ ∀f ∈ D . (A.66)

Also note that if ‖fn−f‖L2 = o(1), then by the Cauchy-Schwarz and Jensen’s inequalities

lim
n→∞

E[{E[fn(X)ρ(Y, hP (Z))|W ]− E[f(X)ρ(Y, hP (Z))|W ]}2]

≤ lim
n→∞

E[{fn(X)− f(X)}2Σ2(W )] = 0 , (A.67)

where the final equality follows from Σ2(W ) ∈ L∞. Therefore, since as argued D is a

dense subset of L2 and in addition R̄ is closed under ‖ · ‖L2 , (A.66) implies that in fact

Ω∗ = Σf ∀f ∈ D if and only if E[f(X)ρ(Y, hP (Z))|W ] ∈ R̄ ∀f ∈ L2 . (A.68)

Moreover, for any g0 ∈ L∞W we may set f0(X) ≡ g0(W )ρ(Y, hP (Z){Σ2(W )}−1 which we

note satisfies f0 ∈ L2 by {Σ2(W )}−1 ∈ L∞ and Assumption 5.1(i). In addition,

E[f0(X)ρ(Y, hP (Z))|W ] = g0(W ){Σ2(W )}−1E[{ρ(Y, hP (Z))}2|W ] = g0(W ) , (A.69)

and hence since g0 ∈ L∞W was arbitrary, it follows that if E[f(X)ρ(Y, hP (Z))|W ] ∈ R̄
for all f ∈ L2, then L∞W ⊆ R̄. However, since R̄ is closed under ‖ · ‖L2 , we can also

conclude that if L∞W ⊆ R̄, then L2
W = R̄ and therefore from result (A.68) finally obtain

Ω∗ = Σf ∀f ∈ D if and only if L2
W = R̄ , (A.70)

which establishes the claim of the Proposition.
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Proof of Proposition 5.2: We first suppose that R̄ = L2
W , and define f0 ∈ L2

W by

f0(W ) ≡ 1{d0(W ) = 0} . (A.71)

Next observe that since R̄ = L2
W by hypothesis, it follows that f0 ∈ R̄ and therefore

0 = inf
s∈L2

Z

E[{∇m(W,hP )[s]− f0(W )}2] ≥ E[{f0(W )}2] = P (d0(W ) = 0) , (A.72)

where we exploited Assumption 5.2(ii) and the inequality applies to the infimum since

it applies for any s ∈ L2
Z , while the final equality follows from definition of f0. Hence,

we conclude that if R̄ = L2
W , then P (d0(W ) 6= 0) = 1. Furthermore, notice that for an

arbitrary f ∈ L2
W we have d0f ∈ L2

W by Assumption 5.2(ii), and hence

0 = inf
s∈L2

Z

E[{∇m(W,hP )[s]− d0(W )f(W )}2] (A.73)

= min
s∈L2

Z

E[{d0(W )}2{s(Z)− f(W )}2] , (A.74)

where the first equality follows from R̄ = L2
W , while attainment in (A.74) results from

the criterion being convex and diverging to infinity as ‖s‖L2 ↑ ∞, and Proposition 38.15

in Zeidler (1984). Thus, we conclude from (A.72) and (A.74) that for every f ∈ L2
W

there exists and rf ∈ L2
Z such that P (rf (Z) = f(W )) = 1. In particular, writing

V = (V (1), . . . , V (dv)) it follows from Assumption 5.2(i) that each coordinate V (j) ∈ L2
W

and hence by (A.74) that P (E[V (j)|Z] = V (j)) = 1 for any 1 ≤ j ≤ dv. We thus conclude

from results (A.72) and (A.74) that if R̄ = L2
W , then condition (62) must hold.

Next, suppose instead that condition (62) holds. Then note that for any f ∈ L2
W

P (f((Z, V )) = f((Z,E[V |Z]))) = 1 (A.75)

due to P (E[V |Z] = V ) = 1, and thus we may identify L2
W with L2

Z . Hence, interpreting

the domain of ∇m(W,hP ) as L2
W in place of L2

Z , it follows from Assumption 5.2(ii)

that ∇m(W,hP ) : L2
W → L2

W is self adjoint. Thus, Theorem 6.6.3 in Luenberger

(1969) implies R̄ = L2
W if and only if ∇m(W,hP ) is injective. However, injectivity of

∇m(W,hP ) : L2
W → L2

W is equivalent to P (d0(W ) 6= 0) = 1, and therefore R̄ = L2
W .

Appendix B - Proof of Auxiliary Results

Lemma B.1. If t 7→ Pt,g1 and t 7→ Pt,g2 are arbitrary paths, then it follows that:

lim sup
n→∞

∫
|dPn1/√n,g1 − dP

n
1/
√
n,g2
| ≤ 2{1− exp{−1

4
‖g1 − g2‖2L2}}1/2 . (B.1)
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Proof: First observe that since t 7→ Pt,g1 and t 7→ Pt,g2 satisfy (1), we must have

lim
n→∞

n

∫
[dP

1/2

1/
√
n,g1
− dP 1/2

1/
√
n,g2

]2 =
1

4

∫
[g1dP

1/2 − g2dP
1/2]2 =

1

4
‖g1 − g2‖2L2 . (B.2)

Moreover, by Theorem 13.1.2 in Lehmann and Romano (2005) we can also conclude

1

2

∫
|dPn1/√n,g1 − dP

n
1/
√
n,g2
| ≤ {1− [

∫
{dPn1/√n,g1}

1/2{dPn1/√n,g2}
1/2]2}1/2

= {1− [

∫
dP

1/2

1/
√
n,g1

dP
1/2

1/
√
n,g2

]2n}1/2 = {1− [1− 1

2

∫
[dP

1/2

1/
√
n,g1
− dP 1/2

1/
√
n,g2

]2]2n}1/2 ,

(B.3)

where in the first equality we exploited Pn
1/
√
n,g1

and Pn
1/
√
n,g2

are product measures,

while the second equality follows from direct calculation. Thus, by (B.2) and (B.3)

lim sup
n→∞

1

2

∫
|dPn1/√n,g1 − dP

n
1/
√
n,g2
|

≤ lim sup
n→∞

{1− [1− 1

2n

∫
n[dP

1/2

1/
√
n,g1
− dP 1/2

1/
√
n,g2

]2]2n}1/2

= {1− exp{−1

4
‖g1 − g2‖2L2}}1/2 , (B.4)

which establishes the claim of the Lemma.

Lemma B.2. Let {Pn}, {Qn}, {Vn} be probability measures defined on a common space.

If {dQn/dPn} is asymptotically tight under Pn and
∫
|dPn − dVn| = o(1), then

|dQn
dPn

− dQn
dVn
| Pn→ 0 . (B.5)

Proof: Throughout let µn = Pn + Qn + Vn, note µn dominates Pn, Qn, and Vn, and

set pn ≡ dPn/dµn, qn ≡ dQn/dµn, and vn ≡ dVn/dµn. We then obtain∫
|dPn
dVn
− 1|dVn =

∫
|pn
vn
− 1|vndµn =

∫
vn>0

|pn
vn
− vn
vn
|vndµn

≤
∫
|pn − vn|dµn =

∫
|dPn − dVn| = o(1) , (B.6)

where the second to last equality follows by definition, and the final equality by assump-

tion. Hence, by (B.6) and Markov’s inequality we obtain dPn/dVn
Vn→ 1. Moreover, since∫

|dVn − dPn| = o(1) implies {Pn} and {Vn} are mutually contiguous, we conclude

dPn
dVn

Pn→ 1 . (B.7)
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Next observe that for any continuous and bounded function f : R→ R we have that∫
f(
dQn
dPn

− dQn
dVn

)dPn =

∫
f(
qn
pn
− qn
vn

)pndµn

=

∫
pn>0

f(
qn
pn

(1− pn
vn

))pndµn =

∫
f(
dQn
dPn

(1− dPn
dVn

))dPn → f(0) , (B.8)

where the final result follows from (B.7), dQn/dPn being asymptotically tight under Pn

and continuity and boundedness of f . Since (B.8) holds for any continuous and bounded

f , we conclude dQn/dPn−dQn/dVn converges in law (under Pn) to zero, and hence also

in Pn probability, which establishes (B.5).

Lemma B.3. Let H ⊆ L2
0, assume that for each g ∈ H there is a path t 7→ Pt,g such

that (1) holds, and for B the Borel σ-algebra on R define the experiments

En ≡ (Rdn,Bdn,
n⊗
i=1

P1/
√
n,g : g ∈ H) . (B.9)

If 0 ∈ H, {ψk}dPk=1 is an orthonormal basis for L2
0, and Φ denotes the standard normal

measure on R, then En converges weakly to the dominated experiment E

E ≡ (RdP ,BdP , Qg : g ∈ H) , (B.10)

where for each g ∈ H, Qg(·) = Q0(·−T (g)) for T (g) ≡ {
∫
gψkdP}dPk=1 and Q0 =

⊗dP
k=1 Φ.

Proof: The conclusion of the Lemma is well known (see e.g. Subsection 8.2 in van der

Vaart (1991a)), but we were unable to find a concrete reference and hence we include

its proof for completeness. Since the Lemma is straightforward when the dimension of

L2
0 is finite (dP <∞) we focus on the case dP =∞. To analyze E , let

`2 ≡ {{ck}∞k=1 ∈ R∞ :

∞∑
k=1

c2
k <∞} , (B.11)

and note that by Example 2.3.5 in Bogachev (1998), `2 is the Cameron-Martin space of

Q0.19 Hence, since for any g ∈ L2
0 we have {

∫
gψkdP}∞k=1 ∈ `2 due to {ψk}∞k=1 being an

orthonormal basis for L2
0, Theorem 2.4.5 in Bogachev (1998) implies

Qg ≡ Q0(· − T (g))� Q0 (B.12)

for all g ∈ L2
0, and thus E is dominated by Q0. Denoting an element of R∞ by ω =

{ωk}∞k=1, we then obtain from {
∫
gψkdP}∞k=1 ∈ `2 and the Martingale convergence

19See page 44 in Bogachev (1998) for a definition of a Cameron Martin space.
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theorem, see for example Theorem 12.1.1 in Williams (1991), that

Q0(ω : lim
n→∞

n∑
k=1

ωk

∫
ψkgdP exists) = 1 (B.13)

lim
n→∞

∫
(

∞∑
k=n+1

ωk

∫
gψkdP )2dQ0(ω) = 0 . (B.14)

Therefore, Example 2.3.5 and Corollary 2.4.3 in Bogachev (1998) yield for any g ∈ L2
0

log(
dQg
dQ0

(ω)) =
∞∑
k=1

ωk

∫
gψkdP −

1

2

∫
(
∞∑
k=1

ωk

∫
gψkdP )2dQ0(ω)

=
∞∑
k=1

ωk

∫
gψkdP −

1

2

∫
g2dP , (B.15)

where the right hand side of the first equality is well defined Q0 almost surely by (B.13),

while the second equality follows from (B.14) and
∑∞

k=1(
∫
gψkdP )2 =

∫
g2dP due to

{ψk}∞k=1 being an orthonormal basis for L2
0.

Next, select an arbitrary finite subset {gj}Jj=1 ≡ I ⊆ H and vector (λ1, . . . , λJ)′ ≡
λ ∈ RJ . From result (B.15) we then obtain Q0 almost surely that

J∑
j=1

λj log(
dQgj
dQ0

(ω)) =

∞∑
k=1

ωk

∫
(

J∑
j=1

λjgj)ψkdP −
J∑
j=1

λj
2

∫
g2
jdP . (B.16)

In particular, we can conclude from Example 2.10.2 and Proposition 2.10.3 in Bogachev

(1998) together with (B.14) and
∑J

j=1 λjgj ∈ L2
0 that, under Q0, we have

J∑
j=1

λj log(
dQj
dQ0

) ∼ N(−
J∑
j=1

λj
2

∫
g2
jdP,

∫
(

J∑
j=1

λjgj)
2dP ) . (B.17)

Thus, for µI ≡ 1
2(
∫
g2

1dP, . . . ,
∫
g2
JdP )′ and ΣI ≡

∫
(g1, . . . , gJ)′(g1, . . . , gJ)dP , we have

(log(
dQg1
dQ0

), . . . , log(
dQgJ
dQ0

))′ ∼ N(−µI ,ΣI) , (B.18)

under Q0 due to (B.17) holding for arbitrary λ ∈ RJ .

To obtain an analogous result for the sequence of experiments En, let Pn ≡
⊗n

i=1 P

and {Xi}ni=1 ∼ Pn. From Lemma 25.14 in van der Vaart (1998) we obtain under Pn

n∑
i=1

log(
dP1/

√
n,gj

dP
(Xi)) =

1√
n

n∑
i=1

gj(Xi)−
1

2

∫
g2
jdP + op(1) (B.19)
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for any 1 ≤ j ≤ J . Thus, defining Pn
1/
√
n,gj
≡
⊗n

i=1 P1/
√
n,gj , we can conclude that

(log(
dPn

1/
√
n,g1

dPn
), . . . , log(

dPn
1/
√
n,gJ

dPn
))′

L→ N(−µI ,ΣI) , (B.20)

under Pn by (B.19), the central limit theorem, and the definitions of µI and ΣI . Fur-

thermore, also note Lemma B.1 implies
∫
|dPn − dPn

1/
√
n,0
| = o(1) and hence

(
dPn

1/
√
n,g1

dPn
, . . . ,

dPn
1/
√
n,gJ

dPn
)′ = (

dPn
1/
√
n,g1

dPn
1/
√
n,0

, . . . ,
dPn

1/
√
n,gJ

dPn
1/
√
n,0

)′ + op(1) (B.21)

under Pn by Lemma B.2 and result (B.20). Thus, by (B.20) and (B.21) we obtain

(log(
dPn

1/
√
n,g1

dPn
1/
√
n,0

), . . . , log(
dPn

1/
√
n,gJ

dPn
1/
√
n,0

))′
L→ N(−µI ,ΣI) , (B.22)

under Pn, and since
∫
|dPn − dPn

1/
√
n,0
| = o(1) also under Pn

1/
√
n,0

. Hence, the Lemma

follows from (i) (B.18), (ii) (B.22), and (iii) {Pn
1/
√
n,g
} and {Pn

1/
√
n,0
} being mutually

contiguous for any g ∈ H by (B.19) and Corollary 12.3.1 in Lehmann and Romano

(2005), which together verify the conditions of Lemma 10.2.1 in LeCam (1986).

Lemma B.4. Let G0 be a centered Gaussian measure on a separable Banach space B

and 0 6= ∆ ∈ B belong to the support of G0. Further suppose Ψ : B→ R+ is continuous,

convex, and satisfies Ψ(0) = 0, Ψ(b) = Ψ(−b) for all b ∈ B, and {b ∈ B : Ψ(b) ≤ t} is

bounded for any 0 < t <∞. For any t > 0 it then follows that

P (Ψ(G0 + ∆) < t) < P (Ψ(G0) < t) .

Proof: Let ‖ · ‖B denote the norm of B, fix an arbitrary t > 0 and define a set C by

C ≡ {b ∈ B : Ψ(b) < t} . (B.23)

For B∗ the dual space of B let ‖ · ‖B∗ denote its norm, and νC : B∗ → R be given by

νC(b∗) = sup
b∈C

b∗(b) , (B.24)

which constitutes the support functional of C. Then note for any b∗ ∈ B∗ we have

νC(−b∗) = sup
b∈C
−b∗(b) = sup

b∈C
b∗(−b) = sup

b∈−C
b∗(b) = νC(b∗) , (B.25)

due to C = −C since Ψ(b) = Ψ(−b) for all b ∈ B. Moreover, note that 0 ∈ C since

Ψ(0) = 0 < t, and hence there exists a M0 > 0 such that {b ∈ B : ‖b‖B ≤ M0} ⊆ C by
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continuity of Ψ. Thus, by definition of ‖ · ‖B∗ we obtain for any b∗ ∈ B∗ that

νC(b∗) = sup
b∈C

b∗(b) ≥ sup
‖b‖B≤M0

b∗(b) = M0 × sup
‖b‖B≤1

|b∗(b)| = M0‖b∗‖B∗ . (B.26)

Analogously, note that by assumption M1 ≡ supb∈C ‖b‖B <∞, and thus for any b∗ ∈ B∗

νC(b∗) = sup
b∈C

b∗(b) ≤ ‖b∗‖B∗ × sup
b∈C
‖b‖B = M1‖b∗‖B∗ . (B.27)

We next aim to define a norm on B under which C is the open unit sphere. To this

end, recall that the original norm ‖ · ‖B on B may be written as

‖b‖B = sup
‖b∗‖B∗=1

b∗(b) , (B.28)

see for instance Lemma 6.10 in Aliprantis and Border (2006). Similarly, instead define

‖b‖B,C ≡ sup
‖b∗‖B∗=1

b∗(b)

νC(b∗)
, (B.29)

and note that: (i) ‖b1 + b2‖B,C ≤ ‖b1‖B,C + ‖b2‖B,C for any b1, b2 ∈ B by direct

calculation, (ii) ‖αb‖B,C = |α|‖b‖B,C for any α ∈ R and b ∈ B by (B.25) and (B.29),

and (iii) results (B.26), (B.27), (B.28), and (B.29) imply that for any b ∈ B we have

M0‖b‖B,C ≤ ‖b‖B ≤M1‖b‖B,C , (B.30)

which establishes ‖b‖B,C = 0 if an only if b = 0, and hence we conclude ‖ ·‖B,C is indeed

a norm on B. In fact, (B.30) implies that the norms ‖ · ‖B and ‖ · ‖B,C are equivalent,

and hence B remains a separable Banach space and its Borel σ-algebra unchanged when

endowed with ‖ · ‖B,C in place of ‖ · ‖B.

Next, note that the continuity of Ψ implies C is open, and thus for any b0 ∈ C there

is an ε > 0 such that and {b : ‖b− b0‖B ≤ ε} ⊂ C. We then obtain

νC(b∗) ≥ sup
‖b−b0‖B≤ε

b∗(b) = sup
‖b‖B≤1

{b∗(b0) + εb∗(b)} = b∗(b0) + ε‖b∗‖B∗ , (B.31)

where the final equality follows as in (B.26). Thus, from (B.27) and (B.31) we conclude

1− ε/M1 ≥ b∗(b0)/νC(b∗) for all b∗ with ‖b∗‖B∗ = 1, and hence we conclude

C ⊆ {b ∈ B : ‖b‖B,C < 1} . (B.32)

Suppose on the other hand that ‖b0‖B,C < 1, and note (B.29) implies for some δ > 0

b∗(b0) < νC(b∗)(1− δ) (B.33)
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for all b∗ ∈ B∗ with ‖b∗‖B∗ = 1. Setting η ≡ δM0 and arguing as in (B.31) then yields

sup
‖b∗‖B∗=1

sup
‖b−b0‖B≤η

{b∗(b)− νC(b∗)} = sup
‖b∗‖B∗=1

{b∗(b0) + η‖b∗‖B∗ − νC(b∗)}

< sup
‖b∗‖B∗=1

{η − νC(b∗)δ} = sup
‖b∗‖B∗=1

δ(M0 − νC(b∗)) ≤ 0 , (B.34)

where the first inequality follows from (B.33), the second equality by definition of η, and

the final inequality follows from (B.26). Since C is convex by hypothesis, (B.34) and

Theorem 5.12.5 in Luenberger (1969) imply {b : ‖b − b0‖B ≤ η} ⊆ C̄. We conclude b0

is in the interior of C̄, and since C is convex and open, Lemma 5.28 in Aliprantis and

Border (2006) yields that b0 ∈ C. Thus, we can conclude that

{b ∈ B : ‖b‖B,C < 1} ⊆ C , (B.35)

which together with (B.32) yields C = {b ∈ B : ‖b‖B,C < 1}. Therefore, B being

separable under ‖ · ‖B,C , 0 6= ∆ being in the support of G0 by hypothesis, and Corollary

2 in Lewandowski et al. (1995) finally enable us to derive

P (Ψ(G0 + ∆) < t) = P (G0 + ∆ ∈ C) < P (G0 ∈ C) = P (Ψ(G0) < t) , (B.36)

which establishes the claim of the Lemma.

Lemma B.5. Let Assumptions 2.1(i), 3.1 hold, and G0 ≡ {G0,k}dFk=1 be a Radon

centered Gaussian measure on `∞([dF ]) satisfying E[G0,kG0,j ] =
∫
fkfjdP for any

1 ≤ k, j ≤ dF . If g ∈ L2
0, then ∆g ≡ {

∫
fkgdP}dFk=1 belongs to the support of G0.

Proof: Let ∆g,k ≡
∫
fkgdP and note F ⊂ L2

0, g ∈ L2
0, and the Cauchy-Schwarz

inequality imply |∆g,k| ≤ ‖g‖L2‖fk‖L2 . Moreover, since ‖f‖L2 is uniformly bounded in

f ∈ F by Assumption 3.1, we conclude ∆g ∈ `∞([dF ]). Letting `1([dF ]) ≡ {{ck}dFk=1 :∑dF
k=1 |ck| <∞} and `∞([dF ])∗ denote the dual space of `∞([dF ]), we next aim to show

sup{b∗(∆g) : b∗ ∈ `∞([dF ])∗ and E[(b∗(G0))2] ≤ 1}

= sup{b∗(∆g) : b∗ ∈ `1([dF ]) and E[(b∗(G0))2] ≤ 1} , (B.37)

where for each {b∗k}
dF
k=1 ≡ b∗ ∈ `1([dF ]) and {bk}dFk=1 ≡ b ∈ `∞([dF ]), b∗(b) =

∑dF
k=1 b

∗
kbk.

To this end, note that if dF < ∞, then `∞([dF ])∗ = `1([dF ]) and (B.37) is immediate.

For the case dF =∞, let `0 ≡ {b ∈ `∞([dF ]) : limk→∞ bk exists} and define

`d ≡ {b∗ ∈ `∞([dF ])∗ : ∃M ∈ R such that b∗(b) = M lim
k→∞

bk ∀b ∈ `0} . (B.38)
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By Lemma 16.30 in Aliprantis and Border (2006), `∞([dF ])∗ = `1([dF ])⊕ `d, and hence

sup{b∗(∆g) : b∗ ∈ `∞([dF ])∗ and E[(b∗(G0))2] ≤ 1}

= sup{{b∗1 + b∗d}(∆g) : b∗1 ∈ `1([dF ]), b∗d ∈ `d and E[({b∗1 + b∗d}(G0))2] ≤ 1} . (B.39)

However, note that the Cauchy-Schwarz inequality and
∑dF

k=1

∫
f2
kdP <∞ imply that

lim
k→∞

|∆g,k| ≤ ‖g‖L2 × lim
k→∞

‖fk‖L2 = 0 . (B.40)

Similarly, by Markov’s inequality, E[G2
0,k] =

∫
f2
kdP if 1 ≤ k ≤ dF , and Assumption 3.1

∞∑
k=1

P (|G0,k| > ε) ≤
∞∑
k=1

1

ε2
E[G2

0,k] =
∞∑
k=1

1

ε2

∫
f2
kdP <∞ . (B.41)

Thus, by the Borel-Cantelli Lemma limk→∞G0,k = 0 almost surely, which implies

b∗d(G0) = 0 almost surely for any b∗d ∈ `d. Since similarly b∗d(∆g) = 0 for any b∗d ∈ `d by

result (B.40), we can conclude from (B.39) that (B.37) holds when dF =∞ as well.

Next, note that for any {b∗k}
dF
k=1 ≡ b

∗ ∈ `1([dF ]), we obtain from ∆g ∈ `∞([dF ]) that

|b∗(∆g)| = |
dF∑
k=1

b∗k

∫
gfkdP |

= |
∫

(

dF∑
k=1

b∗kfk)gdP | ≤ ‖g‖L2 × {
∫

(

dF∑
k=1

b∗kfk)
2dP}

1
2 , (B.42)

where the final result follows from the Cauchy-Schwarz inequality. Furthermore, since∫
fkfjdP = E[G0,kG0,j ] for any 1 ≤ k, j ≤ dF , we obtain that for any finite K ≤ dF

∫
(
K∑
k=1

b∗kfk)
2dP = E[(

K∑
k=1

b∗kG0,k)
2] . (B.43)

In particular, if dF <∞, then combining (B.42) and (B.43) implies for any b∗ ∈ `1([dF ])

b∗(∆g) ≤ ‖g‖L2 × {E[(b∗(G0))2]}
1
2 . (B.44)

In order to obtain an analogous result when dF = ∞, we apply the dominated conver-

gence theorem with the dominating functions (
∑dF

k=1 b
∗
kfk)

2 ≤ (
∑dF

k=1 |b
∗
k|)2

∑dF
k=1 f

2
k and
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(
∑dF

k=1 b
∗
kG0,k)

2 ≤ (
∑dF

k=1 |b
∗
k|)2

∑dF
k=1(G0,k)

2 together with (B.43) to conclude

∫
(
∞∑
k=1

b∗kfk)
2dP = lim

K→∞

∫
(
K∑
k=1

b∗kfk)
2dP

= lim
K→∞

E[(
K∑
k=1

b∗kG0,k)
2] = E[(b∗(G0))2] . (B.45)

Thus, from (B.42) and (B.45) it follows that (B.44) holds for any b∗ ∈ `1([dF ]) for both

finite and infinite dF . Hence, combining (B.37) and (B.44) we finally obtain that

sup{b∗(∆g) : b∗ ∈ `∞([dF ])∗ and E[(b∗(G0))2] ≤ 1} ≤ ‖g‖L2 <∞ . (B.46)

Since G0 is centered, it follows that ∆g belongs to the Cameron-Martin space of G0,

and hence we conclude from Theorem 3.6.1 in Bogachev (1998) and G0 being Radon by

hypothesis that ∆g belongs to the support of G0.

Lemma B.6. Let Assumptions 2.1(i) and 4.1(i) hold, and suppose θ̃n : {Xi}ni=1 → B

is an asymptotically linear estimator for θ(P ) such that
√
n{θ̃n − θ(P )} L→ Z under⊗n

i=1 P on B for some tight Borel Z. It then follows that for any function h ∈ L2
0,

(
√
n{θ̃n − θ(P )}, 1√

n

∑n
i=1 h(Xi)) converges in distribution under

⊗n
i=1 P on B×R.

Proof: For notational simplicity, let η(P ) ≡ (θ(P ), 0) ∈ B × R and similarly define

η̂n ≡ (θ̃n,
1
n

∑n
i=1 h(Xi)) ∈ B × R. Further let (B × R)∗ denote the dual space of

B×R and note that for any d∗ ∈ (B×R)∗ there are b∗d∗ ∈ B∗ and r∗d∗ ∈ R such that

d∗((b, r)) = b∗d∗(b) + r∗d∗(r) for all (b, r) ∈ B×R. For ν̃ the influence function of θ̃n then

define ζd∗(Xi) ≡ {b∗d∗(ν̃(Xi)) + r∗d∗(h(Xi))} to obtain that under
⊗n

i=1 P we have

d∗(
√
n{η̂n − η(P )}) =

1√
n

n∑
i=1

ζd∗(Xi) + op(1) (B.47)

by asymptotic linearity of θ̃n. Thus, for any finite set {d∗k}Kk=1 ⊂ (B×R)∗, we have

(d∗1(
√
n{η̂n − η(P )}), . . . , d∗K(

√
n{η̂n − η(P )})) L→ (Wd∗1

, . . . ,Wd∗K
) (B.48)

for (Wd∗1
, . . . ,Wd∗K

) a multivariate normal random variable satisfying E[Wd∗k
] = 0 for all

1 ≤ k ≤ K and E[Wd∗j
Wd∗k

] = E[ζd∗j (Xi)ζd∗k(Xi)] for all 1 ≤ j ≤ k ≤ K.

Next note that since
√
n{θ̃n−θ(P )} is asymptotically measurable and asymptotically

tight by Lemma 1.3.8 in van der Vaart and Wellner (1996), it follows that
√
n{η̂n−η(P )}

is asymptotically measurable and asymptotically tight on B×R by Lemmas 1.4.3 and

1.4.4 in van der Vaart and Wellner (1996). Hence, we conclude by Theorem 1.3.9 in

52



van der Vaart and Wellner (1996) that any sequence {nk} has a subsequence {nkj} with

√
nkj{η̂nkj − η(P )} L→W (B.49)

under
⊗nkj

i=1 P for W some tight Borel Law on B×R. However, letting Cb(R
K) denote

the set of continuous and bounded functions on RK , we obtain from (B.48), (B.49), and

the continuous mapping theorem that for any {d∗k}Kk=1 ⊂ (B×R)∗ and f ∈ Cb(RK)

E[f((d∗1(W), . . . , d∗K(W)))] = E[f((Wd∗1
, . . . ,Wd∗K

))] . (B.50)

In particular, since G ≡ {f ◦ (d∗1, . . . , d
∗
K) : f ∈ Cb(RK), {d∗k}Kk=1 ⊂ (B ×R)∗, 1 ≤ K <

∞} is a vector lattice that separates points in B ×R, Lemma 1.3.12 in van der Vaart

and Wellner (1996) implies there is a unique tight Borel measure W on B×R satisfying

(B.50). Thus, since the original sequence {nk} was arbitrary, we conclude all limit points

of the law of
√
n{η̂n − η(P )} coincide, and the Lemma follows.

Lemma B.7. Let Assumption 2.1 hold, D be a dense subset of L2, and for any f ∈ D
let Ω∗f denote the semiparametric efficiency bound for estimating

∫
fdP . It then follows

that Ω∗f = Var{f(X)} for all f ∈ D if and only if P is just identified.

Proof: First note the parameter θf (P ) ≡
∫
fdP is pathwise differentiable at θf (P )

relative to T (P ) with derivative θ̇f (g) ≡
∫

ΠT (f)gdP . Therefore, by Theorem 5.2.1 in

Bickel et al. (1993) its efficiency bound is given by Ω∗f = ‖ΠT (f)‖2L2 . For any f ∈ L2 let

ΠL2
0
(f) denote its projection onto L2

0 and note that ΠL2
0
(f) = {f −

∫
fdP}, and hence

Var{f(X)} = ‖ΠL2
0
(f)‖L2 . By orthogonality of T̄ (P ) and T̄ (P )⊥ we then obtain that

Var{f(X)} = ‖ΠL2
0
(f)‖2L2 = ‖ΠT (ΠL2

0
(f)) + ΠT⊥(ΠL2

0
(f))‖2L2

= ‖ΠT (ΠL2
0
(f))‖2L2 + ‖ΠT⊥(ΠL2

0
(f))‖2L2 = Ω∗f + ‖ΠT⊥(f)‖L2 , (B.51)

where in the final equality we exploited that ΠT (ΠL2
0
(f)) = ΠT (f) and ΠT⊥(ΠL2

0
(f)) =

ΠT⊥(f) for any f ∈ L2 due to T̄ (P ) and T̄ (P )⊥ being subspaces of L2
0. Thus, by (B.51)

Var{f(X)} = Ω∗f for all f ∈ D if and only if ΠT⊥(f) = 0 for all f ∈ D, which by

denseness of D is equivalent to T (P )⊥ = {0}.
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