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Abstract

This paper investigates the asymptotic integrated mean squared error (IMSE) of series regres-

sion. Least-squares and averaging least-squares estimators are investigated. We characterize the

optimal asymptotic IMSE using the optimal sequence of least-squares estimators and averaging

weights. We find that under standard assumptions for series regression, the asymptotic IMSE of

the optimal averaging estimator is considerably lower than that of the optimal least-squares estima-

tor. The difference depends on the rate of decay of the series approximation error, the smoothness

of the approximation error, and whether or not the averaging weights are constrained to be positive.

When the approximation error is not smooth, we find significant reduction in asymptotic IMSE by

allowing negative weights.
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1 Introduction

Series methods are becoming increasing popular in econometrics. A series method approximates

an unknown function by a finite order series expansion, estimates this finite order model, and con-

ducts inference acknowledging the approximation. The most well developed theory is for regression

estimation, though series methods are widely applied in other estimation contexts as well.

The most common estimation method is to estimate a single finite order model using a conven-

tional estimator. In regression, this means estimating a finite order approximation by least-squares.

An alternative suggested by Hansen (2007, 2014, 2015) and Hansen and Racine (2012) is to take

an average across a set of finite order approximations. The infeasible optimal averaging estimator

must have (weakly) lower integrated mean squared error (IMSE) than the infeasible optimal single

model estimator, but it is a priori unclear if this difference is negligible asymptotically.

This paper explores this latter question. We derive explicit expressions for the IMSE of series

least-squares estimators and averaging least-squares estimators in the regression context. In general,

the IMSE depends in a complicated way on the approximation error of the series approximations,

making general statements difficult. To give precise answers, we calculate the asymptotic IMSE

under specific structures for the approximation error, allowing for power law decay, exponential

decay, and for a specific type of non-smooth decay. Under these specifications we are able to

calculate closed-form expressions for the IMSE.

We find that for a wide range of specifications the asymptotic IMSE of the averaging estimators

is strictly less than the IMSE of the standard series estimators. The magnitude of the difference

depends on whether the approximation error is exponential, power law, or non-smooth. Under

non-smooth decay, the IMSE of the unconstrained averaging estimator can be arbitrarily smaller

than the IMSE of the standard estimator.

The analysis also points to a previously unnoticed feature concerning weight choice. The as-

ymptotic IMSE of the averaging estimator can be reduced by allowing the averaging weights to be

negative. Instead the relevant constraint is for the cumulative weights to be non-negative.

The theory of nonparametric series regression was developed by Andrews (1991a) and Newey

(1995, 1997). Series estimation for semiparametric models is studied in Chen (2007). The theory

of series selection by cross-validation was developed by Li (1987), Andrews (1991b) and Hansen

(2014b), and for averaging regression by Hansen and Racine (2012). Nonparametric series methods

are reviewed by Li and Racine (2006).

2 Series Regression

Consider a sample of iid observations ( )  = 1   where  ∈ Z a compact subset of
R Define the conditional mean () = E ( |  = ), the regression error  =  − (), and the

conditional variance 2 = E
¡
2 | 

¢


We examine the estimation of () by series regression under the assumption that () is

continuous. Let ()  = 1 2  be a sequence of basis functions from a polynomial series or
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nested spline expansion. For example, a power series sets () = −1. Construct the regressors

 = (). For  = 1 2  let () = (1()  ())
0 and  = (1  )

0 be the first
 terms listed in an × 1 vector.

A series regression approximates the conditional mean () by a linear projection of  on 

We can write this approximating model as

 =  0
 +  (1)

where the coefficient is defined by linear projection

 =
¡
E
¡


0


¢¢−1 E ()  (2)

The  series approximation to () is the linear function ()
0 The corresponding ap-

proximation error is () = () − ()
0 Set  = () and define its squared error

 = E
¡
2

¢
.

The approximation errors  = E
¡
2

¢
and their differences ∆ = −1 −  will play a

major role in our analysis. It is useful to observe that  is non-negative, (weakly) monotonically

decreasing, and asymptotes to zero as  → ∞. The differences ∆ are also non-negative and

asymptote to zero, but are not necessarily monotonic.

To gain some intuition consider the case of orthonormal regressors in which case the  coeffi-

cient is  = E () 

 =

∞X
=+1

2 

and ∆ = 2 It is easy to see in this case that both  and ∆ decline to zero as  → ∞

but while  is monotonic, ∆ = 2 is not generally monotonic.

Another set of important constants are

 = tr
¡
−1 Ω

¢
and their differences ∆ =  − −1 where  = E (

0
) and Ω = E

¡


0


2


¢
 To

gain some intuition consider the case when the errors are conditionally homoskedastic E
¡
2 | 

¢
=

2 in which case  = 2 and ∆ = 2

We will be considering series approximations of order  = 0 1 2  for some  → ∞

For  = 0 set  = ∅ and 0 = 0

We now describe our regularity conditions. As is common in series regression, the largest

estimated model  will be constrained by the rate of growth of the constants

 = sup
∈Z

¡
()

0−1 ()
¢12

 (3)

the largest normalized Euclidean length of the regressor vector. Under standard conditions for
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series regression,  will be a bounded function of the dimension  For example, when () is a

power series then 2 = (2) (see Andrews (1991a)), and when () is a regression spline then

2 = () (see Newey (1995)). For further discussion see Newey (1997) and Qi and Racine (2006).

Assumption 1

1. () has  continuous derivatives on  ∈ Z with  ≥ 2 for a spline, and  ≥  for a power

series.

2. For some   0   0 and  ∞ for all 0 = 1 and 0 ≤  ≤  sup≥1 P (|0| ≤ ) ≤


3. For  ≥ 1,
°°−1 °° ≤  ∞

4. 0  2 ≤ 2 ≤ 2 ∞

5. For some   0 2
1+

  −→ 0

6. 2  0 for all 

Assumption 1.1 is a standard smoothness condition.

Assumption 1.2 specifies that the all linear combinations 0 have a Lipschitz continuous

distribution near the origin. This is used to ensure existence of the expectation of the inverse of

the sample design matrix.

Assumption 1.3 states that the smallest eigenvalue of  is bounded above zero, and thus 

is uniformly invertible. This is a standard condition which is satisfied by typical series expansions.

For example, Newey (1997) demonstrates that Assumption 1.3 holds when the support Z of  is a
Cartesian product of compact connected intervals on which the density () is bounded away from

zero.

Assumption 1.4 controls the degree of conditional heteroskedasticity, bounding the conditional

variance away from zero and infinity.

Assumption 1.5 puts a bound on the maximal number of series terms relative to the sample

size. For a polynomial series expansion this requirement is satisfied when 3+
  = (1) and for

a spline expansion it is satisfied when 2+
  = (1) It indirectly bounds the number of possible

series approximations  + 1

Assumption 1.6 states that all approximating projection models are approximations, so that no

approximating model has zero error.

3 Estimators

The standard estimator of (2) is least-squares of  on :

b = Ã X
=1


0


!−1 X
=1
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and the corresponding series estimator of () is

b() = ()
0b

For  = 0 we define the estimator as b0() = 0.
Averaging least-squares estimators are obtained by averaging across the individual least squares

estimators. Let  = (0 1  ) be a set of weights which sum to one. An averaging least-

squares estimator is defined as

b() = X
=0

b()
4 Integrated Mean Squared Error

The integrated mean-squared error (IMSE) of the  series estimator b() is
() =

Z
Z
E (b()− ())2 () (4)

where () is the marginal density of . The IMSE of the averaging estimator with weight vector

 is

() =

Z
Z
E (b()− ())2 () (5)

Hansen (2015) established the following uniform approximations to () and ()

Theorem 1 Under Assumption 1, as →∞

sup
1≤≤

¯̄̄̄
()− ()

()

¯̄̄̄
−→ 0 (6)

and

sup
∈W

¯̄̄̄
()− ()

()

¯̄̄̄
−→ 0 (7)

where W is the -dimensional unit simplex,

() =  +



(8)

and

() =

X
=0

2

³
 +





´
+ 2

X
=0

−1X
=0



³
 +





´
 (9)

Theorem 1 shows that the IMSE of the series estimator b and the averaging estimator b are
asymptotically equivalent to () and () respectively, uniformly in  ≤  and  ∈ W

Thus to characterize the asymptotic optimal IMSE of these estimators, it is sufficient to focus on
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() and () We define the asymptotic optimal IMSE of the series estimator as

1 = inf


()

the asymptotic optimal IMSE of the averaging estimator where the weights are constrained to the

unit simplex as

2 = inf
∈W

()

and the asymptotic optimal IMSE of the averaging estimator with unconstrained weights as

3 = inf

()

By construction, 1 ≤ 2 ≤ 3 What is unclear is whether or not (and in which situation) the

differences are strict inequalities or meaningfully large. To answer this question, our goal in the

subsequent sections is to calculate the asymptotic behavior of 1 
2
 and 3

As will become clear shortly, allowing for unconstrained weights will be of particular interest.

A difficulty is that Theorem 1 only established the uniform equivalence of IMSE and () for

weights in the unit simplex, but this was a technical and not a substantive restriction. For the

moment we will investigate () as if it is a valid approximation to () beyond the unit

simplex, and postpone to later the technical justification of this extension.

5 Cumulative Weights

As noted by Hansen (2014), (9) can be written as

() =

X
=0

³
∗ + ∗∗





´
where

∗ = 2 + 2

−1X
=0



∗∗ = 2 + 2

X
=+1



Now define the cumulative weights

 =

X
=0



which satisfy  = 1 A simple calculation reveals that

2 − 2−1 = ∗
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and

(1− −1)2 − (1− )
2 = ∗∗

(using the convention −1 = 0) Given these relationships, () can be equivalently written as a
function of  = (0 1  )

() =

X
=0

³¡
2 − 2−1

¢
 +

³
(1− −1)2 − (1− )

2
´ 



´
=  +

−1X
=0

µ
2∆+1 + (1− )

2 ∆+1



¶
(10)

where we have used the fact that 0 = 0

Expression (10) is particularly useful for it shows that the asymptotic IMSE is a simple quadratic

function of the cumulative weights . It is therefore elementary to calculate the IMSE-minimizing

weights.

Specifically, the cumulative weights  which minimize () are

 =
∆+1

∆+1 +∆+1
(11)

with minimized value

3 = inf

() =  +

X
=1

µ
∆∆

∆ +∆

¶
 (12)

Interestingly and somewhat surprisingly, the optimal cumulative weights  satisfy 0 ≤  ≤ 1
but are not necessarily monotonic. Thus the corresponding optimal weights  = −−1 satisfy
−1 ≤  ≤ 1 and are not necessarily non-negative. This suggests that the restriction of the weights
to 0 ≤  ≤ 1 may disallow potential reductions in IMSE.

It is instructive to examine the formula for the optimal cumulative weights (11) to understand

the benefits of allowing for negative weights  If ∆ =  is a constant (as occurs under

conditional homoskedasticity) then the cumulative weights  are monotonically increasing in 

if the differences ∆ are monotonically decreasing (and in this case the optimal weights 

are non-negative). To understand this situation consider the case of orthonormal regressors so

that ∆ = 2 These are monotonically decreasing when the coefficients 
2
 are monotonically

decreasing, which requires the series approximation to be very smooth.

6 Non-Smooth Approximation Decay

It is difficult to characterize the asymptotic IMSE of the averaging estimator (12) without

imposing more structure on the approximation errors  and the variance components  It is

well known that under our assumptions  = (−) with  = 2. This, however, is not
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sufficient to calculate the asymptotic limit of (12), mostly because the latter is a function of the

changes ∆ which are not usefully characterized by an upper bound on the level  To make

progress, we need to impose some structure on  We would like this structure to satisfy the

known bound  = (−) and yet allow  to decline non-smoothly, in particular to allow ∆

to be non-monotonic.

A useful class of such approximation errors takes the form

 = 
³h



i´
(13)

where [] denotes the integer part of   is a positive integer, and  () is a function satisfying

0() ≤ 0 and 00() ≥ 0 If  = 1 then  = () and the changes ∆ are monotonic. If  = 2

then ∆ = 0 for odd  and the even-indexed ∆ are monotonic. In general ∆ 6= 0 only for
indices which are integer multiples of  e.g.  =  for some integer 

We also need to impose structure on the variance component  = tr
¡
−1 Ω

¢
and its differ-

ences ∆ =  − −1 We impose the condition that the changes converge to a constant. This
broadens application beyond conditional homoskedasticity, though it is unclear which contexts are

excluded.

Assumption 2 ∆ −→   0 as →∞

We will consider two specific models for the smooth function () in (13), power law decay and

exponential decay. We present results each case in the next two sections.

7 Power Law Decay

Assumption 3

1.  = 
³h



i´
where () = − for some   0 ,   0 and positive integer .

2. +1
 = (1)

Assumption 3.1 specifies that the approximation errors decay as a power law every  model

. The coefficient  indexes the speed of the decay, with a small  meaning slow decay and a large

 meaning fast decay.

Assumption 3.2 specifies that the largest estimated model  diverges to infinity faster than

11+ This is required to ensure that the optimal model (which is of order 1(1+) under Assump-

tion 3.1) is asymptotically in the choice set, and to ensure that the bias of the largest estimated

model is of smaller order than the optimal IMSE.

To understand the implications of Assumption 3, we start by calculating the optimal weights

 and  for leading examples. We set  = 4  = 100 and E
¡
2 | 

¢
= 1 and set  so that the

optimal series estimator uses  = 8.
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For our first example we set  = 1 (so that the decay is smooth). We plot the optimal cumulative

weights  and weights  in Figures 1 and 2. We can see that the optimal weights are spread out

on series estimators of diverse order, centered around the optimal single series order  = 8 The

weights are smoothly distributed around this point, reflecting the smooth decay in the coefficients.

Figure 1: Optimal Weights under Power Law Decay,  = 1

(a)  (b) 

For our second example we set  = 2 (so that every second coefficient is zero). We plot the

optimal cumulative weights  and weights  in Figures 3 and 4. The cumulative weight plot

shows that the optimal  are not smooth in , but oscillate between 1 and a lower bound which

gradually approaches 1. The weight plot shows that the optimal weights  oscillate between

positive and negative values, converging to zero as  grows. The reason for this behavior is that

if for some , ∆ = 0 yet ∆+1  0 (e.g. if  = 0 yet +1 6= 0) then it is optimal to set

−1 = 1 and   1 implying   0

Figure 2: Optimal Weights under Power Law Decay,  = 2

(a)  (b) 

Assumption 3 is useful as we are able to precisely characterize the asymptotic risk of the
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estimators under this specification of the approximation errors.

Theorem 2 Under Assumptions 1-3,

lim
→∞(1+)1 =

µ




¶(1+)

1(1+) (1 + )  (14)

lim
→∞(1+)2 = ()

1(1+) ()(1+)
Γ

µ
1

1 + 

¶
Γ

µ


1 + 

¶
1 + 

 (15)

and

lim
→∞(1+)3 = ()

1(1+) (1+)
Γ

µ
1

1 + 

¶
Γ

µ


1 + 

¶
1 + 

 (16)

Theorem 2 shows that under power law decay, the IMSE of the three estimators converge at the

common rate −(1+) For small  (slow decay) this rate can be arbitrarily slow, and for large 
(fast decay) this rate can be arbitrarily close to −1 Theorem 2 also characterizes the normalized

asymptotic IMSE of the three estimators, and shows that they have distinct limits. What is of

interest to us is the relative performance of the estimators. In the next corollary we present their

asymptotic ratios.

Figure 3: Asymptotic Ratio of IMSE of Constrained Averaging to Series Estimators

Corollary 1 Under Assumptions 1-3,

lim
→∞

inf∈W ()

inf ()
= lim

→∞
2
1
= ()
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lim
→∞

inf ()

inf∈W ()
= lim

→∞
3
2
=

1

(1+)

where

() =


(1 + )2
Γ

µ
1

1 + 

¶
Γ

µ


1 + 

¶


Corollary 1 shows that the asymptotic ratio of the IMSE of the optimal series estimator to that

of the constrained averaging estimator equals () which is a function only of the power law decay

rate . It appears to be minimized at  = 1 with minimum value (1) = 4 ' 0785. This means
that the constrained averaging estimator has up to 21% smaller asymptotic IMSE than the series

estimator.

Corollary 1 also compares the constrained and unconstrained averaging estimators. It shows

that the unconstrained estimator has smaller asymptotic IMSE when   1 and the percentage

reduction approaches 100% as  gets large. What this shows is that when the series approximation

errors  decline non-smoothly, the unconstrained averaging estimator can achieve much improved

precision relative to the other estimators.

8 Exponential Decay

Assumption 4

1.  = 
³h



i´
where () =  exp(−)  is a positive integer,   0 and   0

2. ln() = (1)

Assumption 4.1 specifies that the approximation errors decay exponentially, every  model 

The coefficient  indexes the speed of the decay with larger  indicating faster decay.

Assumption 4.2 specifies that the largest estimated model  diverges to infinity faster than

ln() This is required to ensure that the optimal model (which is of order ln()) is asymptotically

in the choice set.

Theorem 3 Under Assumptions 1, 2, and 4,

lim
→∞



ln()
1 =




 (17)

lim
→∞



ln()
2 =




 (18)

and

lim
→∞



ln()
3 =




 (19)

Theorem 3 shows that under exponential decay, the IMSE of the three estimators converge at

the common rate ln() Theorem 3 also characterizes the normalized asymptotic IMSE of the

estimators, and shows that they take very simple forms
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Corollary 2 Under Assumptions 1, 2, and 4,

lim
→∞

inf∈W ()

inf ()
= 1

lim
→∞

inf ()

inf∈W ()
= lim

→∞
3
2
=
1




Corollary 2 shows that the asymptotic IMSE of the optimal series and optimal constrained

averaging estimators are equivalent under these assumptions, so there is no asymptotic gain from

averaging if the weights are constrained to be positive. However, the corollary also shows that the

unconstrained optimal averaging estimator has much smaller IMSE when   1 As for the case

of power decay, when the approximation errors decay non-smoothly, the averaging estimator can

achieve much smaller IMSE than the other estimators.

9 Simulation Illustration

We investigate the finite sample behavior of feasible selection and averaging series regression

estimators in a simple simulation experiment.

Our data generating process is

 =  sin (2 + ) + 

 ∼  [0 1]

 ∼ (0 1)

The parameter  is selected so that the popular 2 varies between {025 050 075} The parameter
 is varied between {0 1} The sample size  is varied among {50 75 100 200 400 600 1000}.

We select this DGP as the sine function is a fairly strong nonlinear shape which is difficult to

approximate with low-order polynomials. When  = 0 then the function is odd, so the power series

expansion is a function only of odd powers of  which is similar to the case  = 2 explored in

the previous sections. When  = 1 then the power series expansion is a function of all coefficients,

which is similar to the case  = 1 (though the coefficients do not decay as smoothly as in the

simplified models of the previous sections.)

Our estimates are based on simple power series regression. The largest estimated model is

 = 4
15 We estimate all models for  = 0 to , and construct feasible series estimators by

three methods:

1. Cross-Validation Selection (CV)

2. Cross-Validation Weight Selection with constrained positive weights (JMA)

3. Cross-Validation Weight Selection with cumulative weights constrained to [0 1] (CMA)
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The first method is standard cross-validation selection. The second method is the Jacknife

Model Averaging (JMA) method of Hansen and Racine (2012). The third method analogous to

JMA, but with different weight contraints. This properties of this latter estimator have not been

formally studied (since the previous literature imposes the restriction of positive weights).

For each estimator, we calculate the finite sample integrated mean squared error (IMSE) by

numerical integration using a grid on  ∈ [0 1] with 100 gridpoints and 10,000 simulation replica-
tions. The IMSE is normalized by the IMSE of the individual series estimator with the smallest

finite sample IMSE. Thus plots of IMSE are relative to the infeasible best series approximation.

We plot the IMSE of the estimators as a function of sample size  and show six plots, for

varying choices of 2 and .

Figure 4: Finite Sample Relative IMSE, 2 = 025
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(a)  = 0
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(b)  = 1

Figure 4 shows plots of the relative IMSE for 2 = 025, with  = 0 on the left and  = 1 on the

right. In both plots, the averaging methods (JMA and CMA) have uniformly smaller IMSE than CV

selection. This shows the benefits of averaging methods. In the left-hand plot ( = 0) CMA achieves

significantly lower IMSE than JMA, and even has lower IMSE than infeasible optimal selection.

The reason why the CMA estimator performs well in this context is because the true regression is

an odd function and thus only a function of the odd powers, whcih is exactly the context where we

expect the CMA estimator to have lower IMSE. In the right-hand plot the ordering is reversed. The

JMA estimator achieves the lower IMSE than the CMA estimator, though for large  the difference

becomes negligible. While our theory suggests that CMA should have asymptotically lower IMSE,

perhaps the difference shown here reflects extra finite noise induced by allowing negative weights.

Figures 5 and 6 shows similar plots for 2 = 05 and 2 = 075. They are qualitatively similar

to the plots in Figure 4. We can see that the feasible averaging estimators have smaller IMSE than
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Figure 5: Finite Sample Relative IMSE, 2 = 050
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the feasible selection estimator. While allowing for negative weights can further decrease the IMSE

in some cases, it also increases the IMSE in others. This difference calls for further investigation.

10 Proofs

Proof of Theorem 1 (14): Set   0 Under Assumption 2, there is an  ∞ such that for

all  ≥  |∆ − | ≤  Furthermore, under Assumption 1.4,

2 ≤ ∆ ≤ 2 (20)

for all  Thus

 =

X
=1

∆ ≤  (1 + ) +

¡
2 −  (1 + )

¢
(21)

and similarly

 ≥  (1− ) +

¡
2 −  (1− )

¢
 (22)

Since () =  +



by (8), and under (13)  only decreases for  =  for integer  the

minimum of () will be attained at such a value, and thus we can restrict attention to  = 

Using Assumption 3.1, () = − +



 Combined with (21) we find

() ≤ − + 
 (1 + )


+



¡
2 −  (1 + )

¢
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Figure 6: Finite Sample Relative IMSE, 2 = 075
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The right-hand side is minimized at

 =

µ


 (1 + )

¶1(1+)
with minimized value

−(1+)
µ
 (1 + )



¶(1+)

1(1+) (+ 1) +(−1)

Hence

lim sup
→∞

(1+) inf


() ≤
µ
 (1 + )



¶(1+)

1(1+) (+ 1) 

By a similar calculation using (22),

lim inf
→∞ (1+) inf


() ≥

µ
 (1− )



¶(1+)

1(1+) (+ 1) 

Since  is arbitrary, we conclude that

lim
→∞(1+) inf


() =

µ




¶(1+)

1(1+) (1 + ) 

as stated. ¥
Proof of Theorem 1 (15): The restriction of the weights to the unit simplex is identical to

restricting the cummulative weights to be monotonic: 0 ≤ 0 ≤ · · · ≤  = 1 Let  be the set
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of such cumulative weights. Thus

2 = inf
∈W

() = inf
∈

() (23)

where () is defined in (10). In general, it is difficult to characterize problems of this form (because

of the inequality constraints) but in this case the solution is simple. Since  only declines when

 =  for integer  and  is monotonically increasing, the solution to (23) puts all weight on

the models {0  2 } similar to the optimal series regression problem described in the

the proof of (14). Thus we can focus on the simplified criteria

() =

X
=0

³³
2 − 2(−1)

´
 +

³¡
1− (−1)

¢2 − (1− )
2
´ 



´

= 

µ




¶
+

−1X
=0

Ã
2 (()− ( + 1)) + (1− )

2

¡
(+1) − 

¢


!

where we have used  = () and for notational simplicity we have assumed that is an integer

multiple of 

Minimizing over the , we find

2 = 

µ




¶
+

X
=1

¡
 − (−1)

¢
(( − 1)− ())

 (( − 1)− ()) +
¡
 − (−1)

¢  (24)

As in the proof of Theorem 1 (14), set   0 and  ∞ such that for all  ≥  |∆ − | ≤
 Then for  ≥ 

¯̄
 − (−1) − 

¯̄
≤  Notice that (24) is increasing in the arguments¡

 − (−1)
¢
 For any upper bound on 2, for    we use − (−1) ≤ 2 from (20) and

the inequality (+ ) ≤ , and for  ≥  we use  − (−1) ≤ (1 + ) Thus

2 ≤ 

µ




¶
+


2


+

X
=

(1 + ) (( − 1)− ())

 (( − 1)− ()) + (1 + )
 (25)

For a lower bound, for    we use  − (−1) ≥ 0 and for  ≥  we use  − (−1) ≥
(1− ) Thus

2 ≥ 

µ




¶
+

X
=

(1− ) (( − 1)− ())

 (( − 1)− ()) + (1− )
 (26)

Since the function () is decreasing but convex, by the mean-value theorem

−0() ≤ ( − 1)− () ≤ −0( − 1) (27)

Noting that (25) and (26) are both increasing in the arguments (( − 1)− ())  we find that 2
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is bounded using (27) from above by

2 ≤ 

µ




¶
+


2


+

X
=

(1 + ) (−0( − 1))
 (−0( − 1)) + (1 + )

≤ 

µ




¶
+


2


+

Z ∞

0

(1 + ) (−0())
 (−0()) + (1 + )

 (28)

and from below by

2 ≥ 

µ




¶
+

X
=

(1− ) (−0())
 (−0()) + (1− )

≥ 

µ




¶
+

Z 



(1− ) (−0())
 (−0()) + (1− )

 (29)

Now () = − implies −0() = −−1 so (28) equals

2 ≤ −
 +


2


+

Z ∞

0

1

(1 + ) + 1+


= −
 +


2


+ −(1+)

Z ∞

0

1

(1 + ) + 1+


the equality by the change-of-variables  = 1(1+). Assumption 3.2 implies that (1+)−
 =

(1). Thus

lim sup
→∞

(1+)2 ≤ 

Z ∞

0

1

(1 + ) + 1+


Similarly, (29) equals

2 ≥ −
 +

Z +1



1

(1− ) + 1+


= −
 + −(1+)

Z −1(1+)

−1(1+)

1

(1− ) + 1+


and thus since 
−1(+1) →∞ and −1(+1) → 0,

lim inf
→∞ (1+)2 ≥ 

Z ∞

0

1

(1− ) + 1+


Since  is arbitrary, we deduce that

lim
→∞(1+)2 = 

Z ∞

0

1

 + 1+


= ()1(1+) ()(1+)
1

1 + 
Γ

µ
1

1 + 

¶
Γ

µ


1 + 

¶
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as stated, the second equality using the resultZ ∞

0

1

+ 
 = −(−1)

1


Γ

µ
1



¶
Γ

µ
− 1


¶


¥
Proof of Theorem 1 (16): From (12) and (13)

3 =  +

X
=1

µ
∆∆

∆ +∆

¶

=  +

X
=1

µ
∆ (( − 1)− ())

 (( − 1)− ()) +∆

¶


where the second equality holds under specification (13), which implies that ∆ 6= 0 only for

indices of the form  =  for integer  and ∆ = ( − 1)− ()

As in the proof of (15), set   0 and  ∞ such that for all  ≥  |∆ − | ≤  For any

upper bound on 3, for    we use ∆ ≤ 2 from (20) and the inequality (+ ) ≤ ,

and for  ≥  we use ∆ ≤ (1 + ) Combined with (27) we find

3 ≤ 

µ




¶
+


2


+

X
=

(1 + ) (−0( − 1))
 (−0( − 1)) + (1 + )

≤ 

µ




¶
+


2


+

Z ∞

0

(1 + ) (−0())
 (−0()) + (1 + )

 (30)

Applying () = − this equals

−
 +


2


+

Z ∞

0



(1 + ) + 1+


= −
 +




+ −(1+)

Z ∞

0



(1 + ) + 1+


using the change of variables  = 1(1+). Assumption 3.2 implies that (1+)−
 = (1).

Thus

lim sup
→∞

(1+)3 ≤ 

Z ∞

0

1

(1 + ) + 1+
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Similarly

3 ≥ 

µ




¶
+

X
=

(1− ) (−0())
 (−0()) + (1− )

≥ 

µ




¶
+

Z +1



(1− ) (−0())
 (−0()) + (1− )

 (31)

= −
 +

Z +1





(1− ) + 1+


= −
 + −(1+)

Z −1(1+)(+1)

−1(1+)



(1− ) + 1+


and thus

lim inf
→∞ 3 ≥

Z ∞

0



(1− ) + 1+


Since  is arbitrary we conclude that

lim
→∞ 3 = 

Z ∞

0

1

 + 1+


= ()1(1+) (1+)
1

1 + 
Γ

µ
1

1 + 

¶
Γ

µ


1 + 

¶
as stated. ¥

Proof of Theorem 2 (17): As in the proof of Theorem 1 (14), we can restrict attention to

 =  with integer  Using Assumption 4.1, () =  exp(−) + 


 Combined with (21) we

find

() ≤  exp(−) + 
 (1 + )


+



¡
2 −  (1 + )

¢




The right-hand side is minimized at

 =
1


ln

µ


 (1 + )

¶
with minimized value

 (1 + )


+
ln()



 (1 + )


− 1


ln

µ
 (1 + )



¶
 (1 + )


+



¡
2 −  (1 + )

¢


=
ln()



 (1 + )


+(−1)

Hence

lim sup
→∞



ln()
inf


() ≤  (1 + )
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By a similar calculation using (22),

lim inf
→∞



ln()
inf


() ≥  (1− )




Since  is arbitrary, we conclude that

lim
→∞



ln()
inf


() =





as stated. ¥
Proof of Theorem 2 (18): Equations (28) and (29) apply. Assumption 4.1 () =  exp(−)

implies −0() =  exp(−) so (28) equals

2 ≤  exp

µ
−



¶
+


2


+

Z ∞

0

1

exp() + (1 + )


=  exp

µ
−



¶
+


2


+

(1 + ) ln

µ
1 +



(1 + )

¶


(32)

using the result Z 



1

exp() +
 =

ln (1 + exp(−))− ln (1 + exp(−))


which implies Z ∞

0

1

exp() +
 =

ln (1 +)




Assumption 4.2 implies the first term in (32) is (−1) Thus

lim sup
→∞



ln()
2 ≤

(1 + )




(29) equals

2 ≥  exp

µ
−



¶
+

Z 



1

exp() + (1− )


=  exp

µ
−



¶
+
1



(1− )

2
ln

µ
1 + 

 exp(−)

(1− )

¶
− 1



(1− )

2
ln

µ
1 + 



(1− )
exp

µ
−



¶¶
The first term is 

¡
−1

¢
and the third term is (−1) (since the term in logarithms is (1) by the

same argument). Hence

lim inf
→∞



ln()
2 ≥

(1− )

2
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Since  is arbitrary we conclude that

lim
→∞



ln()
2 =






as stated. ¥
Proof of Theorem 2 (19): Equations (30) and (31) apply. Assumption 4.1 () =  exp(−)

implies −0() =  exp(−) so (30) equals

3 ≤  exp

µ
−



¶
+


2


+

Z ∞

0

1

exp() + (1 + )


=  exp

µ
−



¶
+


2


+

(1 + ) ln

µ
1 +



(1 + )

¶


and thus

lim sup
→∞



ln()
3 ≤

(1 + )




(31) equals

3 ≥  exp

µ
−



¶
+

Z +1



1

exp() + (1− )


=  exp

µ
−



¶
+
1



(1− )

2
ln

µ
1 + 

 exp(−)

(1− )

¶
− 1



(1− )

2
ln

µ
1 + 



(1− )
exp

µ
−



¶¶


We find

lim sup
→∞



ln()
3 ≥

(1− )




Since  is arbitrary we conclude that

lim
→∞



ln()
3 =






as stated. ¥
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