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Abstract

In an attempt to free bootstrap theory from the shackles of asymptotic considerations,
this paper studies the possibility of justifying, or validating, the bootstrap, not by letting
the sample size tend to infinity, but by considering the sequence of bootstrap P values
obtained by iterating the bootstrap. The main idea of the paper is that, if this sequence
converges to a random variable that follows the uniform U(0, 1) distribution, then the
bootstrap is valid. The idea is studied by making the model under test discrete and finite,
so that it is characterised by a finite three-dimensional array of probabilities. This device,
when available, renders bootstrap iteration to any desired order feasible. It is used for
studying a unit-root test for a process driven by a stationary MA(1) process, where it is
known that the unit-root test, even when bootstrapped, becomes quite unreliable when the
MA(1) parameter is in the vicinity of -1. Iteration of the bootstrap P value to convergence
achieves reliable inference except for a parameter value very close to -1. The paper then
endeavours to see these specific results in a wider context, and tries to cast new light on
where bootstrap theory may be going.
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1. Introduction

The statistical method called the bootstrap relies in no way on any asymptotic consider-
ations, but current bootstrap theory relies on them. I find this an extremely undesirable
state of affairs, if for no other reason than that the choice of an asymptotic construction is
inevitably somewhat arbitrary. This paper tries to take a first step towards remedying the
sitution. Asymptotic arguments rely on sequences of random variables that converge, in
probability or in distribution, to some desirable limit. Since bootstrap inference is exact
only in rare instances, any justification of it must also rely on some sequence of random
variables with a desirable limit.

The approach of this paper involves the convergence or otherwise of a sequence of bootstrap
P values for testing the correct specification of an econometric (or statistical) model,
obtained by iterating the bootstrap. Computing resources are nowadays such that the first
iterate, called the double bootstrap, is in many cases feasible; when it is, it is presumed
that it can provide more reliable statistical inference than either conventional asymptotics
or the single uniterated bootstrap.

It is certainly tempting to suppose that the only barrier to still more reliable inference via
bootstrap iteration is computational infeasibility. This paper attempts to show that boot-
strap iteration can indeed improve reliability of inference. In order to do so, a procedure
of discretisation is used, by means of which the model under test is described by a finite
three-dimensional array of probabilities.

In the next Section, I introduce the definitions and notation needed to formulate the
problem. The notation is somewhat unconventional, and makes use of the idea that a test
statistic for a model, as also a bootstrap data-generating process (DGP), can be represented
mathematically by a stochastic process, with index set the set of DGPs contained in
the model. In Section 3, the discretisation procedure is laid out, and the mechanics of
bootstrap iteration developed. The notion of the bootstrap discrepancy is briefly considered
in Section 4, and some simple conclusions drawn. Then, in Section 5, a specific model
is treated, and analysed numerically. The model under test is characterised by a unit-
root process, obtained by cumulating a stationary MA(1) process, and the specification is
tested by an augmented Dickey-Fuller (ADF) test. The model is completely parametric,
with one single parameter, namely the MA(1) parameter. It is well known that, when
this parameter is close to -1, the ADF test becomes thoroughly unreliable. A parametric
bootstrap suggests itself as a way of improving reliability. The numerical study shows that
it does so except for a parameter in a very small neighbourhood of -1, if the sequence of
iterated P values is followed until (approximate) convergence. This occurs for the 44th

bootstrap iteration, an order of iteration completely inconceivable in normal circumstances.
The results obtained for this example are discussed in a more general context in Section 6,
and some concluding remarks are offered in Section 7.
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2. Concepts and Notations

We treat a test statistic as a stochastic process with as index set the set of DGPs in a
model M. If we denote such a statistic by τ , then we have

τ : M× Ω → R,

where (Ω,F , P ) is a suitable probability space, which can, for present purposes, be taken
to be that of a random number generator. A realisation of the test statistic is therefore
written as τ(µ, ω), for some µ ∈ M and ω ∈ Ω. For the moment, we suppose that, under
any DGP we may consider, the distribution of τ is absolutely continuous with respect to
Lebesgue measure on R. The statistic τ is used to test the hypothesis that the true DGP µ
belongs to a model M0, which is a subset of M.

For notational convenience, we suppose that the range of τ is the [0, 1] interval rather
than the whole real line, and that the statistic takes the form of an approximate P value,
which thus leads to rejection when the statistic is too small. Let R0 : [0, 1] → [0, 1] be the
cumulative distribution function (CDF) of τ under any DGP µ ∈ M:

R0(α, µ) = P
{
ω ∈ Ω | τ(µ, ω) ≤ α

}
.

We also define the quantile function as the inverse of R0 for given µ:

R0

(
Q0(α, µ), µ

)
= α = Q0

(
R0(α, µ), µ

)
.

For µ ∈ M0, the random variable R0

(
τ(µ, ω), µ

)
is distributed as U(0,1). This property

is what allows Monte Carlo tests to give exact inference when τ is pivotal with respect
to M0.

If τ is not pivotal, exact inference is no longer possible. The principle of the bootstrap
is that, when we want to use some function or functional of an unknown DGP µ, we use
an estimate in its place. This estimate is the bootstrap DGP, which we denote by b. Let
a realisation of τ be denoted as t. Then the bootstrap statistic that follows the U(0,1)
distribution approximately is R0(t, b). We make the definition

R̂0(α, µ) =
1

B

B∑
j=1

I
(
τ(µ, ω∗

j ) < α
)
, (1)

where the ω∗
j are independent. Each ω∗

j can be thought of as a set of those random numbers

needed to generate a realisation of the statistic. Then, as B → ∞, R̂0(α, µ) tends almost
surely to R0(α, µ). Accordingly, we estimate the bootstrap statistic by R̂0(t, b).

Just as t is τ(µ, ω) where neither the true DGP µ nor the realisation ω is observed, so also
the bootstrap DGP b can be expressed as β(µ, ω), for the same unobserved µ and ω as
for t. We have

β : M× Ω → M0,
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where, although the model M on the left-hand side may be a superset of M0, we insist
that the M0 on the right-hand side is the null model under test (the first golden rule of
bootstrapping).

With this definition, the bootstrap statistic R0(t, b) is a realisation of a random variable
p1(µ, ω), where the new function p1 : M× Ω → [0, 1] is defined as follows:

p1(µ, ω) ≡ R0

(
τ(µ, ω), β(µ, ω)

)
.

Since by absolute continuity R0 is a continuous function, it follows that p1 also has an
absolutely continuous distribution. We denote the continuous CDF of p1(µ, ω) by R1(·, µ).

The random variable R1

(
p1(µ, ω), µ

)
is, by construction, distributed as U(0,1). But, as

with R0

(
τ(µ, ω), µ

)
, which is also distributed as U(0,1), this fact is not enough to allow

exact inference, because the actual µ that generates the data is unknown outside the
context of a simulation experiment.

However, the bootstrap principle can again be applied, and the unknown µ replaced by
the estimate b = β(µ, ω), which is directly observed, or at least can be calculated from
observed data. This leads to the double bootstrap, of which the P value, for realisations t
and b, can be written as

R̂1

(
R̂0(t, b), b

)
,

where R̂1 is defined analogously to (1) as

R̂1(α, µ) =
1

N

N∑
i=1

I
(
p1(µ, ω

∗
i ) < α

)
.

Under the assumption that the true µ belongs to the null model M0, this is an estimate
of the probability mass in the distribution of the single bootstrap statistic to the left of
the estimate R̂0(t, b) of R0(t, b). As both B and N tend to infinity, the double bootstrap
P value tends almost surely to R1

(
R0(t, b), b

)
. Expressed as a random variable, this

limiting P value is

p2(µ, ω) ≡ R1

(
R0(τ(µ, ω), β(µ, ω)), β(µ, ω)

)
If we write the right-hand side above as R1

(
p1(µ, ω), β(µ, ω)

)
, the analogy with p1(µ, ω)

is complete. This demonstrates that the double bootstrap, by estimating the probability
mass to the left of the single bootstrap P value, effectively bootstraps the single bootstrap
P value.

From that observation, it is clear that we can define iterated bootstraps as follows. For
r = 0, 1, 2, . . ., we define

Rr(α, µ) = P
{
ω ∈ Ω | pr(µ, ω) ≤ α

}
,

pr+1(µ, ω) = Rr

(
pr(µ, ω), β(µ, ω)

)
,

(2)
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where we initialise the recurrence by the definition p0(µ, ω) = τ(µ, ω). Thus pr+1(µ, ω)
is the bootstrap P value obtained by bootstrapping the r th order P value pr(µ, ω). It
estimates the probability mass in the distribution of the r th order P value to the left of its
realisation.

In order for bootstrap iteration to be useful, it is necessary for the sequence {pr(µ, ω)}
of iterated bootstrap P values to converge as r → ∞, and that the limit of the sequence
to be distributed as U(0,1) for all µ ∈ M0. Note that it is possible to have convergence
to a distribution quite different from U(0,1). For instance, with a resampling bootstrap,
since with high probability each resample does not contain some of the observations of
the original sample, repeated iteration leads to iterated bootstrap DGPs that have only
one observation of the original sample, repeated as many times as the original sample has
observations. This is one reason for our having limited attention until now to absolutely
continuous distributions.

If inference based on iterated P values is to have the usual properties, then the sequences
should converge, preferably almost surely, or at least in probability, to some random vari-
able distributed as U(0,1). Perhaps the limiting variable should be R0(τ(µ, ω), µ), which
is indeed distributed as U(0,1), but perhaps not.

This research project aims at sorting this out, and finding sufficient conditions for conver-
gence. Necessary conditions would be even better, if we achieve sufficiency. It would then
be possible to free the bootstrap from asymptotic theory in order to say what bootstrap
procedures are valid and what not. The new criterion will be convergence of the iterated
bootstrap P value to a known distribution.

3. Making Things Discrete

It’s not obvious where to start in the study of convergence. But it is sometimes helpful, at
least for intuition, if a discrete model is considered. This means that it is useless to aim for
the continuous U(0,1) distribution, but that need not be harmful. Various wild bootstraps
exist, and although they are in many ways similar to resampling bootstraps, they do not
suffer from the problem that the bootstrap DGP becomes degenerate if the bootstrap is
iterated. The P value remains discrete, however. In the case of a wild bootstrap that
assigns random signs to n residuals, there are at most 2n possible bootstrap samples, and
so at most 2n possible bootstrap statistics. But if the bootstrap statistic is distributed
uniformly over these 2n values, that is quite enough for reliable inference, even although
one cannot achieve exact inference for a test at any arbitrary level in [0, 1].

In what follows, I assume that the statistic, in approximate P value form, can take on
only the values i/n, i = 0, 1, . . . , n, where n is not necessarily the sample size. Further,
I assume that there are only m possible bootstrap DGPs. Thus I can let the outcome
space Ω consist of just m(n+ 1) points, labelled by two coordinates (i, j), i = 0, 1, . . . , n,
j = 1, . . . ,m. Golden Rule 1 requires the bootstrap DGP to satisfy the null hypothesis,
and so it makes sense to let the null contain exactly the m DGPs already considered.
Under the null, then, µ is represented by k, say, with k = 1, . . . ,m.
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We can then write
τ
(
k, (i, j)

)
= i/n, β

(
k, (i, j)) = j,

where the DGP µ is represented by k, and the outcome ω by (i, j). The model is then
completely characterised by the probabilities pkij , k, j = 1, . . . ,m, i = 0, 1, . . . , n, where

pkij = P
[
τ
(
k, (i, j)

)
= i/n and β

(
k, (i, j)

)
= j

]
. (3)

We have, for all k = 1, . . . ,m, that

n∑
i=0

m∑
j=1

pkij = 1,

and we make the definitions

akij =

i−1∑
l=0

pklj and Aki =

m∑
j=1

akij i = 0, . . . , n+ 1. (4)

Thus akij is the probability under DGP k that τ is less than i/n and that b = j, while Aki

is the marginal probability under k that τ < i/n. Thus we may write

R0(α, k) = Ak,⌊αn⌋+1.

Note that ak0j = Ak0 = 0 for all k, j = 1, . . . ,m. Further, Ak(n+1) = 1 and ak(n+1)j is the
marginal probability under k that β = j, for all k = 1, . . . ,m.

While the probabilities pkij depend on the DGP k, the realisations τ
(
k, (i, j)

)
and

β
(
k, (i, j)

)
do not. This is analogous to the fact in the continuous case that, once the

statistic τ(µ, ω) and the bootstrap DGP β(µ, ω) are realised as t and b respectively, ev-
erything that one can compute, all iterated bootstrap P values or bootstrap DGPs, can
be expressed as functions of t and b alone, without reference to the DGP µ that generated
them.

Consider next the bootstrap P value under DGP k with realisation (i, j). It is the proba-
bility mass under the bootstrap DGP j of a value of τ less than i. It follows that

p1
(
k, (i, j)

)
= Aji, (5)

where k does not appear on the right-hand side. Analogously, in the continuous case, the
realised bootstrap P value is R0(t, b), without mention of the underlying µ.

In order to iterate the bootstrap, we need the function R1(α, µ), the CDF of p1 under the
DGP µ. In the discrete case, the function can be written as

R1(α, k) = P
[
p1
(
k, (i, j)

)
< α

]
=

n∑
i=0

m∑
j=1

pkijI(Aji < α), (6)
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where I(·) is an indicator function. Now let q1j (α) be defined by

q1j (α) = max
i=0,...,n

{
i
∣∣ Aji ≤ α

}
In this discrete context, q1j (α)/n can be interpreted as an α-quantile of the distribution of
the statistic τ with DGP j. In fact, for α = Aji, it is easy to see that q1j (Aji) = i. Since
the ajil are increasing in i, so too are the Aji, and we see that

Aji ≤ α for all i ≤ q1j (α) and Aji > α for all i > q1j (α).

Thus the event {Aji < α} is equivalent to the inequality i < q1j (α).

This allows us to compute R1(α, k). We find from (6) that

R1(α, k) =
m∑
j=1

q1j (α)−1∑
i=0

pkij =
m∑
j=1

akq1
j
(α)j . (7)

We may think of the indices k (a DGP), i (a statistic), and j (a DGP) as forming a three-
dimensional array, with k varying in the horizontal direction and i in the vertical direction
of a flat two-dimensional surface, and j varying perpendicular to that surface. Fixing k
in R1(α, k) puts us on a sheet defined by the vertical i-direction and the perpendicular
j-direction. The sum in the right-hand expression above takes us on a trip across this
sheet, where, as we vary j, the i-coordinate traces out the values q1j (α).

The right-hand side of (7) can be seen to correspond precisely to the usual definition of R1

in the continuous case. Since akq1
j
(α)j is the probability under k that j is the bootstrap

DGP and that τ < q1j (α)/n, and since q1j (α)/n corresponds to Q0(α, j), (7) says that

R1(α, k) =
∑
j

Pr k
(
β = j and τ < Q0(α, j)

)
= P

[
τ(k, ω) < Q0(α, β(k, ω)

]
= P

[
R0

(
τ(k, ω), β(k, ω)

)
< α

]
= P

[
p1(k, ω) < α

]
,

which is indeed the probability that the bootstrap P value is less than α.

Next, we wish to compute the double bootstrap P value p2(µ, ω), or, in the notation of
the discrete problem, p2

(
k, (i, j)

)
. Now p2(µ, ω) = R1

(
p1(µ, ω), β(µ, ω)

)
in the general

notation, and this last equation translates to

p2
(
k, (i, j)

)
= R1

(
Aji, j

)
=

m∑
l=1

ajq1
l
(Aji)l (8)

where the first equality follows because p1
(
k, (i, j)

)
= Aji, and β

(
k, (i, j)

)
= j, and the

second follows from the definition (7). Make the definition

A2
ji =

m∑
l=1

ajq1
l
(Aji)l, (9)
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where the superscript 2 is an index, not an exponent. Then the double bootstrap P value
p2
(
k, (i, j)

)
= A2

ji; compare with the relation (5).

In fact, the definition (9) corresponds to the definition of the double bootstrap P value in
the continuous case. To see this, note that (9) tells us that

A2
ji =

m∑
l=1

Pr j
(
β = l and τ < q1l (Aji)

)
, (10)

where j in the discrete case plays the role of µ in the continuous case. Then, since q1l (α)
is Q0(α, l), and Aji, the bootstrap P value, can be expressed as R0(i/n, j), it follows that
q1l (Aji) = Q0

(
R0(i/n, j), l

)
. Then (10) becomes

A2
ji = P

[
τ(j, ω) < Q0

(
R0(i/n, j), β(j, ω)

)]
= P

[
R0

(
τ(j, ω), β(j, ω)

)
< R0(i/n, j)

]
= P

[
p1(j, ω) < R0(i/n, j)

]
= R1

(
R0(i/n, j), j

)
(11)

Now i/n corresponds to τ(µ, ω), and j corresponds to β(µ, ω), so that, expressed as a
random variable, A2

ji is written as

R1

(
R0(τ(µ, ω), β(µ, ω)), β(µ, ω)

)
= R1

(
p1(µ, ω), β(µ, ω)

)
,

as we wished to show.

The CDF of the random variable p2 under DGP k is denoted by R2(α, k), and it is defined
as follows:

R2(α, k) =
n∑

i=0

m∑
j=1

pkijI
(
p2
(
k, (i, j)

)
< α

)
=

n∑
i=0

m∑
j=1

pkijI(A
2
ji < α).

From their definition, the functions q1j (α) are increasing in α, and we saw that the Aji are
increasing in i. Consequently the A2

ji are increasing in i. Now we can make the definition

q2j (α) = max
i=0,...,n

{i
∣∣ A2

ji ≤ α}. (12)

Clearly, the q2j are increasing in α, and then

R2(α, k) =
m∑
j=1

q2j (α)−1∑
i=0

pkij =
m∑
j=1

akq2
j
(α)j . (13)

This again takes us on a trip across the plane defined by k, where the i-coordinate for
given j is now q2j (α).

– 7 –



Although q1j (α)/n is an α-quantile of the statistic τ , it is not the case that q2j (α)/n can

be interpreted as an α-quantile. We saw in (11) that A2
ji = R1

(
R0(i/n, j), j

)
. The defini-

tion (12) implies that q2j (α) is the value of i such that R1

(
R0(i/n, j), j

)
= α. Thus

q2j (α)/n = Q0

(
Q1(α, j), j

)
, (14)

where Q1 is the quantile function inverse to R1. Note that q2j (A
2
ji) = i.

In order to grasp the pattern of the iterations, we now look at the triple bootstrap P value,
p3. From (13), we have

p3
(
k, (i, j)

)
= R2

(
p2
(
k, (i, j)

)
, j
)
= R2(A

2
ji, j) =

m∑
l=1

ajq2
l
(A2

ji
)l.

We make the definitions

A3
ji =

m∑
l=1

ajq2
l
(A2

ji
)l, (15)

and
q3j (α) = max

i=0,...,n
{i

∣∣ A3
ji ≤ α}, (16)

so that A3
ji is the realisation of the triple bootstrap P value for ω = (i, j). The distribu-

tion R3 of the triple bootstrap P value is therefore

R3(α, k) =
n∑

i=0

m∑
j=1

pkijI(A
3
ji < α) =

m∑
j=1

q3j (α)−1∑
i=0

pkij =
m∑
j=1

akq3
j
(α)j ,

which invites us to take yet another trip across the plane defined by k.

To see how this compares with the continuous case, we can observe that (15) says that

A3
ji =

m∑
l=1

Pr j
(
β = l and τ < q2l (A

2
ji)/n

)
.

Now from (14) we know that q2l (A
2
ji)/n can be written as Q0

(
Q1(A

2
ji, l), l

)
, while from (11)

A2
ji = R1

(
R0(i/n, j), j

)
. It follows that

q2l (A
2
ji)/n = Q0

(
Q1

(
R1

(
R0(i/n, j), j

)
, l
)
, l
)
.

The inequality τ < q2l (A
2
ji)/n is therefore equivalent to

R0(τ, l) < Q1

(
R1

(
R0(i/n, j), j

)
, l
)

or R1

(
R0(τ, l), l

)
< R1

(
R0(i/n, j), j

)
,
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and so

A3
ji = P

[
R1

(
R0(τ(j, ω), β(j, ω), β(j, ω)

)
< R1

(
R0(i/n, j), j

)]
= P

[
p2(j, ω) < R1

(
R0(i/n, j), j

)]
= R2

(
R1

(
R0(i/n, j), j

)
, j
)
, (17)

which corresponds to R2

(
R1(R0(τ(µ, ω), β(µ, ω)), β(µ, ω)), β(µ, ω)

)
in the continuous case.

From (16) and (17), we can see that q3j (α) is the value of i such that R2

(
R1(R0(i/n, j), j), j

)
is equal to α. Thus

q3j (α)/n = Q0

(
Q1

(
Q2(α, j), j

)
, j
)
,

where Q3 is inverse to R3.

The pattern is now clear. If we initialise the recurrence that defines bootstrap iteration as
follows:

p0
(
k, (i, j)

)
= A0

ji = i/n; q0j (α) = ⌊nα⌋ independent of j,

then at each step r of the iteration, we have

pr
(
k, (i, j)

)
= Ar

ji,

qrk(α) = max
i=1,...,n

{i
∣∣ Ar

ki ≤ α},

qrk(Aki) = i, and

Rr(α, k) =

m∑
j=1

akqr
j
(α)j .

The recurrence is then implemented by a trip across the plane defined by k:

Ar+1
ki =

m∑
j=1

akqr
j
(Ar

ki
)j = Rr(A

r
ki, k). (18)

It is easy enough to show that these definitions correspond to those of the continuous case,
given in (2).

Given the model, that is, all the pkij , this defines a mapping of the m × n matrix Ar,
with typical element Ar

ki, into Ar+1. Since Ar
k0 = 0, we do not need to include these as

elements of Ar. Convergence of the bootstrap iterations is thus convergence of iterates of
this (very nonlinear) mapping. Although (18) appears to defined a separate mapping for
each element ki of the matrix, the mappings of individual elements are interdependent,
since Ar+1

ki depends on the akqr
j
(Aki)j for all j = 1, . . . ,m.

The present setup allows for almost anything. What we need is to find some conditions
like being close to pivotal and/or having the bootstrap DGP “close” to the actual DGP
that would imply convergence.
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4. Bootstrap Discrepancies

The bootstrap discrepancy is defined, for a given DGP µ, and a given significance level α,
as the difference between the rejection probability of the bootstrap test for DGP µ and
level α and α itself. It is therefore equal to R1(α, µ) − α. For iterated bootstraps, the
definition is the same: at level r, the order-r discrepancy is Rr(α, µ) − α. The aim in
bootstrapping, and in iterated bootstrapping, is to minimise the bootstrap discrepancy.

There are two trivial cases in which the discrepancy is zero, and the iterated bootstrap
P values coincide with the single bootstrap P value. The first case arises when the statistic
τ is a pivot. In the discrete context then, the Aki do not depend on k; recall that Aki is
the probability under k that τ < i/n. We may express this by writing Aki = A·i. This
means that q1j (α) depends only on α, not on j; we write q1j (α) = q1· (α). We see that, in
this case,

R1(α, k) =
m∑
j=1

akq1· (α)j = A·q1· (α), (19)

and this does not depend on k. Therefore the bootstrap P value is also a pivot, with the
same distribution whatever the DGP k, and the probability that it is less than α is the
probability that τ < q1· (α)/n, which would be exactly equal to α without the discreteness
of the problem, and is indeed equal to α for α = A·i, since q

1
· (A·i) = i, and the probability

that τ < i/n is A·i = α. For these values of α, therefore, the bootstrap discrepancy is zero.

For realisation (i, j), the bootstrap P value is A·i. The double bootstrap P value is,
from (8), A2

ji = R1(A·i, ·), and, from (19), this is A·q1· (A·i). Now

q1· (A·i) = max
j

{j
∣∣ A·j ≤ A·i},

and the value of the right-hand side is clearly just i. Thus the double bootstrap P value
is A·i, the same as the single bootstrap P value, and also therefore independent of j.

The other special case arises when the bootstrap DGP always coincides with the true DGP.
If so, then, for all admissible k, i, and j, we have akij = Akiδkj . The factor of Aki on the
right-hand side of this equation is justified, because

Aki ≡
m∑
j=1

akij = Aki

m∑
j=1

δkj = Aki.

From (7) we have

R1(α, k) =
m∑
j=1

akq1
j
(α)j =

m∑
j=1

δkjAkq1
j
(α) = Akq1

k
(α).
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In particular, for α = Aki, i = 0, . . . , n, since q1k(Aki) = i, R1(Aki, k) = Aki, which implies
that for these values of α, the bootstrap discrepancy is zero. The double bootstrap P value
is A2

ki, which is

A2
ki =

m∑
j=1

akq1
j
(Aki)j = Akq1

k
(Aki) = Aki.

Thus, as in the case of a pivotal statistic, so too here the bootstrap discrepancy is zero for
α = Aki, and the double bootstrap P value is identical to the single bootstrap P value, as
are all higher-order P values.

Suppose that the recurrence (18) converges, in the sense that, for given k and i,

qr+1
j (Ar+1

ki ) = qrj (A
r
ki) for all j = 1, . . . ,m. (20)

Then Ar+s
ki = Ar

ki and qr+s
j (Ar+s

ki ) = qrj (A
r
ki) for all j and for all positive integers s.

Then, since Rr(A
r
ki, k) = Ar+1

ki = Ar
ki, it follows that the bootstrap discrepancy is zero for

significance level Ar
ki if k is the DGP and τ = i/n. If (20) holds for all i = 0, 1, . . . , n, the

bootstrap discrepancy is zero unconditionally for DGP k for levels Ar
ki.

The discrepancy can also be defined for the raw statistic τ . If it is assumed that it is in
approximate P value form, then the discrepancy at nominal level α is the probability that
τ < α minus α. This discrepancy, and the bootstrap discrepancy at all orders, for all the
DGPs in the discrete model, can be found using the elements of the matrices Ar, r =
0, 1, 2, . . .. For the raw discrepancy, Aki is the probability under DGP k that τ < i/n. The
information contained in these numbers can be best examined graphically, with a P value
plot or a P value discrepancy plot; see Davidson and MacKinnon (1998). The former is
the locus of the points (i/n,Aki), i = 0, . . . , n; the latter of the points (i/n,Aki − i/n).
Exact inference corresponds to the former being the 45◦ line across the unit square, or the
latter coinciding with the horizontal axis.

For the first-order bootstrap discrepancy, the P value plot is the locus of points (Aki, A
2
ki),

and the P value discrepancy plot of the points (Aki, A
2
ki − Aki). This is because

A2
ki = R1(Aki, k) is the probability that the bootstrap P value is less than Aki; see (8)

and (9). In general, for the order-r bootstrap discrepancy, the P value plot is the locus of
the points (Ar

ki, A
r+1
ki ), and similarly for the P value discrepancy plot.

5. An Example

Whereas it is easy to make the set of P values discrete, for instance by choosing n = 100
and thus letting a P value take on values 0.00, 0.01, 0.02, . . . , 0.99, 1.00 only, there are not
very many examples for which it is obvious how to make the null model M0 discrete. An
exception to this, which we study in this section, is the model treated in Davidson (2010).
The model can be expressed as

yt = yt−1 + ut, ut = vt + θvt−1, t = 1, . . . , n (21)
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where the vt are Gaussian white noise with variance 1, so that yt is a unit-root process,
obtained by cumulating the MA(1) process ut with MA parameter θ. Since (21) takes the
form of a recurrence relation, it must be initialised. In order to make ut stationary, v0 is
set to a standard normal variable, independent of the vt, t = 1, 2, . . . , n.

The model is tested by a unit-root test, for which the test statistic is the τc version of the
augmented Dickey-Fuller (ADF) test, proposed by Dickey and Fuller (1979), and justified
asymptotically under much less restrictive assumptions by Said and Dickey (1984) and
Phillips and Perron (1988). The statistics are computed using the ADF testing regression

∆yt = β0 + β1yt−1 +

p∑
i=1

γi∆yt−1 + residual,

where p is a lag truncation parameter, usually chosen in a data-determined way on the
basis of some information criterion. When this regression is run by ordinary least squares,
the τc statistic is the conventional t statistic for the hypothesis that β1 = 0. Under the
null hypothesis that the series yt has a unit root, this statistic has a well-known but
nonstandard asymptotic distribution.

With all of these assumptions, the model (21) is purely parametric, with only one par-
ameter, namely θ. It is therefore easy to make the model discrete, by choosing a grid
of values for θ. Since the model is parametric, the bootstrap is also parametric, and is
characterised by a value of θ. In our discrete model, these values are restricted to the
chosen grid. The parameter θ has to be estimated under the null hypothesis, as discussed
in Davidson (2007) – the second “Golden Rule of Bootstrapping”. In his earlier study,
Davidson used a nonlinear least-squares (NLS) procedure that gave results comparable to
those on maximum likelihood.

Testing for a unit root in a series obtained by summing a stationary MA(1) process with
a parameter close to -1 leads to serious size distortions under the null, on account of the
near cancellation of the unit root by the MA component in the driving stationary series ut.
Davidson (2010) found that, for a sample size of 100, the best results in terms of minimising
size distortion under the null were obtained with a lag truncation parameter of p = 12.
However, since we wish to study the effect of bootstrap iteration, it is very desirable to
consider a setup in which the size distortion is non-negligible, and so the neighbourhood
of θ = −1 is suitable in this regard. Further, as θ approaches -1 from above, the distortion
changes sign from negative to positive.

In Figure 1 are plotted the 0.01, 0.05, and 0.10 quantiles of the distribution of the asymp-
totic P value obtained for the raw τc statistic by use of the program described in Mac-
Kinnon (1994) and MacKinnon (1996), plotted as a function of θ from -0.4 to -0.99.
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Figure 1

It can be see that, for values of θ from -0.4 to around -0.7, the curves are nearly flat,
with P values close to nominal. Thus the distribution does not change much over this
range. From -0.7 to -0.99, however, the distribution is very sensitive indeed to the value
of θ, and this implies difficulties for the bootstrap if data are generated by a DGP in this
region. The greatest size distortions are to be expected around θ = −0.90, since it is in
that neighbourhood that the curves bend most. Closer to θ = −1, although the curves
are very far from flat, they follow more or less straight lines. According to the analysis in
Davidson and MacKinnon (1999), this fact helps to reduce distortion more than in regions
in which the graphs are curved.

The discrete model is as follows:

• The number of possible test statistics, n+1, is given by n = 100, so that the possible
values are, as above, those of the grid 0.00, 0.01, 0.02, . . . , 0.99, 1.00.

• The τc test statistic is converted into an asymptotic P value by use of the program
described in MacKinnon (1994) and MacKinnon (1996). The P value is rounded to
the closest point on the grid defined above.

• The discrete model M0 is defined, with m = 60 points, for the DGPs (21) with
parameters θ on the grid −0.40,−00.41,−0.42, . . . ,−0.98,−0.99. The value of θ = −1
must of course be excluded, as belonging to the alternative hypothesis by which yt is
an I(0) process rather than to the null of an I(1) process.
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• The parameter θ which defines the bootstrap DGP is estimated by the NLS procedure
mentioned above. Values greater than −0.40 are rounded down to this value; values
between −0.99 and −1 are rounded up to −0.99; intermediate values are rounded to
the nearest point on the grid.

For the iteration procedure defined in Section 3 to be implemented, it is necessary to
estimate by simulation the 60 × 101 × 60 = 363,600 probabilities pkij defined in (3). To
this end, 60 separate simulation experiments were undertaken, for each of the 60 DGPs
of the discrete model, on a machine with 64 cores. There were 100,000 replications for
each of the 60 experiments. When all of the pkij had been estimated in this way, the
matrix A defined in (4) was constructed, and then the successive matrices Ar computed
using (18). Convergence of the recurrence was achieved up to the third decimal place of the
probabilities after 43 iterations. Since one iteration of the bootstrap gives what we call the
double bootstrap, it is the 44-tuple bootstrap which can be identified with the infinitely
iterated bootstrap. As expected on the basis of the evidence in Figure 1, convergence was
slowest for the DGPs with θ around -0.95.

Selected results

The iterative procedure yields so many results, many of them rather uninteresting, that I
limit myself here to a selection of more interesting things that emerge from the computa-
tions.

For values of θ where the distribution of the P value varies comparatively little, convergence
is quite rapid. For θ = −0.50, adequate convergence was achieved after only 5 iterations; for
θ = −0.60, after 6 iterations; for θ = −0.70, 11 iterations were needed. Once the sensitive
region is entered, 16 iterations were needed for θ = −0.80 and θ = −0.85, 22 iterations for
θ = −0.90, 26 for θ = −0.94, but only 17 for θ = 0.99. The 43 iterations were needed for
a somewhat tighter criterion of convergence applied to all values of θ.

In Figures 2, 3, and 4, are shown results similar to some results in Davidson (2010).
For θ = −0.90, −0.95, and −0.99, P value discrepancy plots are given for bootstrap
iterations, starting with the ordinary (single) bootstrap, through the quintuple bootstrap.
For θ = −0.90, the discrepancy plots appear to converge monotonically to the horizontal
axis, implying that the quintuple bootstrap and higher iterations give exact inference up
to the errors induced by the discretisation and the simulation errors in estimating the
probabilities pkij . However, for θ = −0.95 things look rather different. The results are
plainly contaminated by more noise than for θ = −0.90, and it is not clear whether there
really is convergence. For θ = −0.99, the switch from under- to over-rejection is evident.
Here, it is possible to believe that the dicrepancy plots are converging to the horizontal
axis, but that has not happened even for the quintuple bootstrap.
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Figure 2: n = 100, θ = -0.90
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Figure 3: n = 100, θ = -0.95
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Figure 4: n = 100, θ = -0.99

It can be remarked here that, for values of θ greater than −0.90, convergence to the hori-
zontal axis is essentially complete by the quadruple or quintuple bootstrap. One example
is presented in Figure 5, for θ = −0.70. Notice the scale of the vertical axis. Evidently,
the distortion even of the single bootstrap is not very great.
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Figure 5: n = 100, θ = -0.70

After the recurrence has converged, we can look at the discrepancy plot for the infinitely
iterated, or 44-tuple, bootstrap. In Figure 6, these discrepancy plots are shown for θ =
−0.70, −0.90, −0.95, and −0.99. Because the recurrence converged, the discrepancy in all
cases must be exactly equal to zero for the nominal levels in the relevant rows of the matrix
we may write as A∞. All but the first few of these levels are in the neighbourhood of 1.
Indeed, all of the curves cross the horizontal axis several times, and are almost coincident
with it for values of α close to 1. The fact that the discrepancies are not zero everywhere
is of course a consequence of the discrete nature of the model. For θ = −0.95 and −0.99,
there is a peak near α = 0, for the same reason. However, even for θ = −0.90, and more
so for θ = −0.70, the discrepancy is everywhere very small indeed.
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Figure 6: n = 100, fully iterated bootstraps

6. Discussion

The study in this paper raises a number of issues. One obvious one is to what extent
the use of a discrete model is feasible in practice, with the sort of bootstrap commonly
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used, rather than one governed by a single scalar parameter. Two parameters are probably
feasible, but with any more one swiftly runs afoul of the curse of dimensionality.

It is clear that the most important advantage of this discrete approach is that it eliminates
conventional bootstrapping based on a simulation experiment. In exchange, it is necessary
to conduct the probably costly simulation experiment needed in order to estimate the
pkij of (3). However, once that experiment is carried out, it serves as a fixed overhead for
arbitrary levels of bootstrap iteration. It thus becomes feasible to examine the convergence
or otherwise of the sequence of iterated bootstrap P values.

If it were possible to iterate the bootstrapping of a quantity with a continuous distribution
without discretisation, exact inference would be possible if this sequence converges, because
the limiting random variable is distributed uniformly on the [0, 1] interval. This follows
directly from the recurrence relation (2), since at convergence we have, in obvious notation,

p∞(µ, ω) = R∞
(
p∞(µ, ω), β(µ, ω)

)
,

which implies that the continuously distributed random variable p∞(µ, ω) is equal to its
own CDF evaluated at itself. In this case, the crucial question is whether the sequence of
iterated bootstrap P values converges.

In the discrete case, convergence is probably guaranteed. It remains to be seen whether
this can be proved, and, if so, under what regularity conditions. However, this need not
imply that exact inference is possible. In the example of Section 5, we saw that, with
θ = −0.99, the P value discrepancy after convergence is exactly zero only for a specific set
of significance levels. Away from the neighbourhood of θ = −1, we saw that this hardly
mattered, as those values were spread almost uniformly over the [0, 1] interval, while, for
θ = −0.99, they were almost all close to 1.

It is quite possible to concoct pathological examples in which, after convergence, the only
levels capable of giving exact inference are zero and one; hardly a desirable state of affairs.
One such example is given by a model with only two DGPs, and a statistic the distribution
of which under one of these strictly stochastically dominates the distribution under the
other. If the bootstrap DGP is always, deterministically, just one of the two, then, under
that one, as we saw in Section 4, convergence is immediate and allows exact inference.
Under the other DGP, numbered 2 say, however, convergence is eventually achieved, with
all of the A2i equal to 0 or 1, except for the first or the last, depending on the direction of
the dominance.

What we saw for θ = −0.99 is on the way to being an example of this, but not quite.
This brings out another point, which is that, for one and the same model, convergence
may occur, in the continuous case, for some DGPs in the model, but not for others. In
the discrete case, there is no such sharp dichotomy, but, for some DGPs, we may have
convergence of the sort we observed for θ greater than −0.90, while, for others, it may be
more like what we saw with θ = −0.99.
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The most frequently used sort of bootstrap is a resampling bootstrap. This implies that
the bootstrap distribution is discrete, although it is usually presumed that the underly-
ing distribution or distributions are continuous. It is in any case impossible to iterate a
resampling bootstrap indefinitely, because each resample has fewer separate objects than
the sample from which the resample is drawn. If one iterates a resampling bootstrap,
eventually there will be only one element of the original sample left, which one presumably
being randomly selected with equal probabilities for all the elements. “Convergence” in
such a case would be meaningless.

If we abstract from the simulation noise in the estimation of the pkij , the discrete model
is quite nonrandom. We are, in effect, working simultaneously with every point in the
outcome space. Convergence, therefore, is to be understood in the ordinary sense of
convergence of a sequence of real numbers. In the continuous case, of course, we have to
speak of stochastic convergence, which may perhaps be almost sure, or in probability. If
this discrete approach were to be used with real data, it would be necessary to use these
data to compute realisations of the quantity being bootstrapped and of the bootstrap
DGP, and then to discretise them according to the plan of discretisation in use. If the
realised quantity is indexed by i and the realised bootstrap DGP by j, then for the r-tuple
bootstrap, the bootstrap P value is Ar

ji.

Many questions remain regarding the numerical stability of the discrete model. In the
example in Section 5, I chose to declare convergence when the sum of the absolute values
of the differences between the elements of the matrices Ar and Ar+1 was less than 0.1.
Until the iterations were stopped, it was observed that this sum decreased monotonically
with each new iteration. This is suggestive of numerical stability, but is not definitive,
of course. It would also be useful to examine to what extent simulation error in the
preliminary estimation of the pkij is propagated through the iterations; I plan to study
this in future work. Another point that will bear future investigation is to what extent
coarseness or fineness of the discretisation matters, both for the statistics (the P values)
and for the DGPs of the model. If relatively coarse discretisation yields satisfactory results,
this would be of enormous importance for any practical use of this approach.

It would be immensely useful to find ways of discretising the set of bootstrap DGPs used
in situations that are not purely parametric. While it is easy enough to replace the use
of a discrete empirical distribution for resampling by a continuous version, thus avoiding
the problem inherent to iterating a conventional resampling bootstrap, it is not obvious
how to make discrete the set of bootstrap DGPs that would be obtained in this way. I
conjecture that, when bootstrapping an approximately pivotal statistic, it may be possible
to cover the set of bootstrap DGPs rather coarsely and still achieve satisfactory results.
How best to do so remains to be seen.

The double bootstrap was introduced by Beran in two papers, Beran (1987) and Beran
(1988), in which he refers to “pre-pivoting”, meaning making some quantity more close to
being pivotal for a model by bootstrapping it, and then bootstrapping the result. This
interpretation clearly applies to higher orders of bootstrap iteration. In some sense, the
iterative procedure serves to project the original statistic into a space of pivotal statistics.
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It would be desirable to formalise this intuition. It is also necessary to see to what extent
this “projection” may adversely affect the power of a test. Of course, power is not uniquely
defined when a non-pivotal statistic is used, but if an iterated bootstrap P value follows
the uniform U(0, 1) distribution, it is by definition a pivot.

In discussing bootstrap “validity”, it is conventional to make use of an appropriate asymp-
totic construction in order to show that the limiting distribution of the quantity considered
is the same as the limiting distribution of its bootstrap counterpart. This is of course a very
weak requirement. A somewhat better justification for the bootstrap comes from any re-
finements than can be demonstrated by an asymptotic argument, as in Hall’s (1992) book,
where he uses Edgeworth expansion. But the bootstrap is not intrinsically an asymptotic
procedure; rather, current bootstrap theory relies on asymptotic arguments. It seems to
me that convergence of the sequence of iterated bootstrap P values to the uniform distribu-
tion is a much richer and more satisfactory means of justifying or validating the bootstrap.
No asymptotic argument is involved, so that the potential arbitrariness of the choice of an
asymptotic construction is avoided. To the extent that the approach of this paper can be
made operational for problems of interest, the approach carries its validity along with it.

Further, the new proposed criterion for validity is by no means equivalent to asymptotic
validity. An example of this is when a regression model, the disturbances of which are not
necessarily Gaussian, is bootstrapped using a bootstrap DGP that imposes Gaussianity.
Under very weak conditions on the asymptotic construction, this bootstrap is asymptoti-
cally valid. But it certainly is not, by the criterion of convergence of iterated P values to
U(0, 1), for any DGPs in the model the disturbances of which are in fact not Gaussian.

7. Concluding Remarks

In this paper, I have tried to take a step towards realising my ambition of freeing bootstrap
theory from the use of asymptotic methods. The main idea is that the bootstrap can
be justified – or not, as the case may be – by the convergence of the iterations of the
bootstrap. This idea is developed here by making it tractable to study the bootstrap to
any order of iteration, by means of a discretisation procedure that makes the model under
test represented by a finite three-dimensional array of probabilities.

Much work remains to be done if the approach of the paper is to be useful, either in practice,
or in the further development of bootstrap theory. One question seems particularly urgent:
can we find sufficient conditions for convergence of the sequence of iterated P values to
the uniform U(0, 1) distribution, conditions that can be checked without excessive trouble
in situations of practical interest? This, and other related questions, will be pursued in
future work.
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